
Dirac Specification

Version 2.2.3
Issued: September 23, 2008

Abstract

This document is the specification of the Dirac video decoder and stream syntax.

Dirac is a royalty-free video compression system developed by the BBC utilising wavelet transforms and

motion compensation. It is designed to be simple, flexible, yet highly effective. It can operate across a

wide range of resolutions and application domains, including: internet and mobile streaming, delivery of

standard-definition and high-definition television, digital television and cinema production and distribution,

and low-power devices and embedded applications.

The system offers several key features:

• lossy and lossless coding using a common tool set

• intra-coded modes for professional production applications

• a special low delay mode for link adaption applications, such as the carriage of HDTV over SDTV

infrastructure

• motion-compensated (‘long-GOP’) modes for distribution applications

• gradual quality reduction with increasing compression

CONTENTS 1

Contents

1 Introduction 9

2 Scope 9

3 Conformance notation 11

4 Normative References 11

5 Definition of abbreviations and terms 12

5.1 Abbreviations . 12

5.2 Terms . 12

6 Conventions 14

6.1 State representation . 14

6.2 Number formats . 14

6.3 Data types . 14

6.3.1 Elementary data types . 14

6.3.2 Compound data types . 14

6.4 Functions and operators . 15

6.4.1 Assignment . 15

6.4.2 Boolean functions and operators . 15

6.4.3 Integer functions and operators . 16

6.4.4 Array and map functions and operators . 17

6.4.5 Precedence and associativity of operators . 18

6.5 Pseudocode . 18

6.5.1 Processes and functions . 18

6.5.2 Variables . 18

6.5.3 Control flow . 19

7 Overall specification 21

8 Video formats 22

8.1 Colour model . 22

8.2 Interlace . 22

8.3 Component sampling . 22

8.4 Bit resolution . 22

8.5 Picture frame size and rate . 23

9 Stream syntax 24

9.1 Pseudocode . 24

CONTENTS 2

9.2 Stream . 24

9.3 Sequence . 24

9.4 Parse Info headers . 25

9.5 Data units . 25

9.5.1 Auxiliary data . 26

9.5.2 Padding data . 26

9.6 Parse info header syntax . 26

9.6.1 Parse code values . 27

9.6.2 Parse code value rationale (Informative) . 28

10 Sequence header 30

10.1 Parse parameters . 30

10.1.1 Version number . 31

10.1.2 Profiles and levels . 31

10.2 Base video format . 31

10.3 Source parameters . 32

10.3.1 Setting source defaults . 33

10.3.2 Frame size . 33

10.3.3 Chroma sampling format . 33

10.3.4 Scan format . 34

10.3.5 Frame rate . 34

10.3.6 Pixel aspect ratio . 35

10.3.7 Clean area . 36

10.3.8 Signal range . 36

10.3.9 Color specification . 37

10.3.9.1 Color primaries . 38

10.3.9.2 Color matrix . 38

10.3.9.3 Transfer function . 39

10.4 Picture coding mode . 39

10.5 Initializing coding parameters . 39

10.5.1 Picture dimensions . 40

10.5.2 Video depth . 40

11 Picture syntax 40

11.1 Picture parsing . 41

11.1.1 Picture header . 41

11.2 Picture prediction data . 41

11.2.1 Picture prediction parameters . 42

CONTENTS 3

11.2.2 Block parameters . 42

11.2.3 Setting chroma block parameters . 43

11.2.4 Numbers of blocks and superblocks . 43

11.2.5 Motion vector precision . 43

11.2.6 Global motion . 43

11.2.7 Picture prediction mode . 45

11.2.8 Reference picture weight values . 45

11.3 Wavelet transform data . 45

11.3.1 Transform parameters . 46

11.3.1.1 Wavelet filters . 46

11.3.2 Transform depth . 47

11.3.3 Codeblock parameters (core syntax only) . 47

11.3.4 Slice coding parameters (low delay syntax only) . 47

11.3.5 Quantisation matrices (low-delay syntax) . 48

12 Block motion data syntax 49

12.1 Prediction modes and splitting modes . 49

12.1.1 Prediction modes . 49

12.1.2 Splitting modes . 49

12.2 Structure of block motion data arrays . 50

12.2.1 Block motion data initialisation . 50

12.3 Motion data decoding process . 50

12.3.1 Superblock splitting modes . 51

12.3.2 Propagating data between blocks . 52

12.3.3 Block prediction modes . 52

12.3.3.1 Block prediction mode . 52

12.3.3.2 Block global mode . 53

12.3.4 Block motion vector elements . 53

12.3.5 DC values . 54

12.3.6 Spatial prediction of motion data elements . 54

12.3.6.1 Prediction apertures

. 54

12.3.6.2 Superblock split prediction . 55

12.3.6.3 Block mode prediction . 55

12.3.6.4 Block global flag prediction . 56

12.3.6.5 Motion vector prediction . 56

12.3.6.6 DC value prediction . 57

12.3.7 Block motion parameter contexts . 58

CONTENTS 4

12.3.7.1 Superblock splitting mode . 58

12.3.7.2 Motion vectors . 58

12.3.7.3 DC values . 58

13 Transform data syntax 59

13.1 Subband data structures . 59

13.1.1 Wavelet data initialisation . 59

13.1.2 Subband dimensions . 61

13.2 Inverse quantisation . 61

13.2.1 Quantisation factors and offsets . 62

13.3 Intra DC subband prediction . 63

13.4 Core syntax wavelet coefficient unpacking . 63

13.4.1 Overall process . 64

13.4.2 Subbands . 64

13.4.2.1 Zero subband . 64

13.4.2.2 Non-skipped subbands . 65

13.4.3 Subband codeblocks . 65

13.4.3.1 Codeblock dimensions . 65

13.4.3.2 Codeblock unpacking loop . 65

13.4.3.3 Skipped codeblock flag . 66

13.4.3.4 Codeblock quantiser offset . 66

13.4.4 Subband coefficients . 67

13.4.4.1 Zero parent . 67

13.4.4.2 Zero neighbourhood . 67

13.4.4.3 Sign prediction . 68

13.4.4.4 Coefficient context selection . 68

13.5 Low delay wavelet coefficient unpacking . 71

13.5.1 Overall process . 71

13.5.2 Slices . 71

13.5.3 Determining the number of bytes in a slice . 72

13.5.4 Setting slice quantisers . 73

13.5.5 Slice subbands . 73

13.5.5.1 Slice subband dimensions . 73

13.5.5.2 Luma slice subband data . 73

13.5.5.3 Chroma slice subband data . 74

14 Sequence decoding (Informative) 75

14.1 Non-sequential picture decoding . 75

CONTENTS 5

15 Picture decoding 77

15.1 Overall picture decoding process . 77

15.2 Picture reordering . 77

15.3 Random access . 77

15.4 Reference picture buffer management . 78

15.5 Picture IDWT . 78

15.6 Component IDWT . 79

15.6.1 Vertical and horizontal synthesis . 79

15.6.2 One-dimensional synthesis . 80

15.6.2.1 Mathematical formulation of lifting processes (Informative) 82

15.6.3 Lifting filter parameters . 82

15.7 Removal of IDWT pad values . 85

15.8 Motion compensation . 85

15.8.1 Overlapped Block Motion Compensation (OBMC) (Informative) 85

15.8.2 Overall motion compensation process . 86

15.8.3 Dimensions . 87

15.8.4 Initialising the motion compensated data array . 88

15.8.5 Motion compensation of a block . 88

15.8.6 Spatial weighting matrix . 89

15.8.7 Pixel prediction . 90

15.8.8 Global motion vector field generation . 91

15.8.9 Chroma subsampling . 92

15.8.10Sub-pixel prediction . 92

15.8.11Half-pixel interpolation . 93

15.9 Clipping . 94

15.10Video output ranges . 95

A Data encodings 96

A.1 Bit-packing and data input . 96

A.1.1 Reading a byte . 96

A.1.2 Reading a bit . 96

A.1.3 Byte alignment . 96

A.2 Parsing of fixed-length data . 97

A.2.1 Boolean . 97

A.2.2 n-bit literal . 97

A.2.3 n-byte unsigned integer literal . 97

A.3 Variable-length codes . 97

A.3.1 Data input for bounded block operation . 98

CONTENTS 6

A.3.2 Unsigned interleaved exp-Golomb codes . 98

A.3.3 Signed interleaved exp-Golomb . 99

A.4 Parsing of arithmetic-coded data . 100

A.4.1 Context probabilities . 100

A.4.2 Arithmetic decoding of boolean values . 101

A.4.3 Arithmetic decoding of integer values . 101

A.4.3.1 Binarisation and contexts . 101

A.4.3.2 Unsigned integer decoding . 101

A.4.3.3 Signed integer decoding . 102

B Arithmetic Coding 103

B.1 Arithmetic coding principles (Informative) . 103

B.1.1 Interval division and scaling . 103

B.1.2 Finite precision arithmetic . 104

B.1.3 Symbol probability estimation . 104

B.2 Arithmetic decoding engine . 104

B.2.1 State and contexts . 104

B.2.2 Initialisation . 105

B.2.3 Data input . 105

B.2.4 Decoding boolean values . 105

B.2.5 Renormalisation . 106

B.2.6 Updating contexts . 107

B.2.7 Efficient implementation (Informative) . 108

B.2.7.1 Change of variables . 108

B.2.7.2 Bytewise operation . 108

B.2.7.3 Look-up table . 109

B.3 Arithmetic encoding (Informative) . 109

B.3.1 Encoder variables . 109

B.3.2 Initialisation . 110

B.3.3 Encoding binary values . 110

B.3.3.1 Scaling the interval . 110

B.3.3.2 Updating contexts . 110

B.3.3.3 Renormalisation and output . 111

B.3.3.4 Flushing the encoder . 111

B.4 Efficient implementation . 112

B.4.0.5 Bytewise operation . 112

B.4.0.6 Overlap and add . 112

CONTENTS 7

C Predefined video formats 114

D Profiles and levels 118

D.1 Profiles . 118

D.1.1 Low Delay profile . 118

D.1.2 Simple profile . 118

D.1.3 Main (Intra) profile . 118

D.1.4 Main (Long GOP) profile [TBD] . 119

D.2 Levels . 119

D.2.1 Decoder data buffers[DRAFT-TBC] . 120

D.2.1.1 Bit stream buffer operation[TBC] . 120

D.2.1.2 Picture reordering and decoded picture buffer[TBC] 120

D.2.2 Buffer models [TBC] . 120

D.2.3 Level 1: VC-2 default level . 120

D.2.3.1 Sequence header parameters . 120

D.2.3.2 Picture header parameters . 121

D.2.3.3 Transform data . 121

D.2.4 Level 128: Long-GOP default level [DRAFT-TBD] . 121

D.2.4.1 Sequence header parameters . 122

D.2.4.2 Picture header parameters . 122

D.2.4.3 Transform data . 122

D.2.4.4 Reordering and reference buffers [DRAFT-TBD] 122

E Low delay quantisation matrices 124

E.1 Quantisation matrices (low delay syntax) . 124

E.2 Quantisation matrix design and quantiser selection (Informative) 126

E.2.1 Noise power normalisation . 126

E.2.2 Custom quantisation matrices . 127

F Video systems model (Informative) 129

F.1 Colour models . 129

F.1.1 Y CBCR coding . 129

F.1.2 Y COCG coding . 129

F.1.3 Signal range . 129

F.1.4 Primaries . 130

F.1.5 Colour matrix . 130

F.1.5.1 Y CBCR coding . 130

F.1.5.2 YCoCg coding . 130

F.2 Transfer characteristics . 131

CONTENTS 8

F.2.1 TV transfer characteristic . 131

F.2.2 Extended Colour Gamut . 131

F.2.2.1 Linear . 131

F.3 Frame rate . 131

F.4 Aspect ratios and clean area . 131

F.4.1 Pixel aspect ratio . 131

F.4.1.1 Using non-square pixel aspect ratios . 132

F.4.2 Clean area . 132

G Wavelet transform and lifting (Informative) 133

G.1 Wavelet filter banks . 133

G.2 Lifting . 134

9

1 Introduction

Dirac is an open video codec developed by the BBC. It has been developed to address the growing complexity

and cost of current video compression technologies, which provide greater compression efficiency at the expense

of implementing a very large number of tools. Dirac is a powerful and flexible compression system, yet uses

only a small number of core tools. A key element of its flexibility is its use of the wavelet multi-resolution

transform for compressing pictures and motion-compensated residuals, which allows Dirac to be used across a

very wide range of resolutions without enlarging the toolset.

Dirac is an Open Source software project, and reference implementations of the decoder and encoder are avail-

able at http://sourceforge.net/projects/dirac. A high-performance implementation, called Schrodinger,

is also available open source at http://schrodinger.sourceforge.net.

Dirac offers the following features:

Multi-resolution transforms Data is encoded using the wavelet transform, and packed into the bitstream

subband by subband. High compression ratios result in a gradual loss of resolution. Lower resolution

output can be obtained for low complexity decoding by extracting only the lower resolution data.

Inter and intra frame coding Pictures can be encoded using motion compensation for low bit rate, or

without reference to other pictures for editing, archive and other professional applications.

Frame and field coding Both frames and fields can be coded.

Dual syntax A low delay syntax is available for applications requiring very low, fixed, latency. This can be

of the order of a few lines of input or output video. The low delay syntax is suitable for light compression

for the re-use of low bandwidth infrastructure, for example carrying HDTV over SD-SDI links. The low

delay syntax uses intra coding and simple Variable Length Codes for entropy codes. The core syntax

provides much greater compression efficiency at the expense of a whole picture delay. The core syntax

can use a highly efficient form of binary adaptive arithmetic coding, as well as motion compensation, for

maximum performance.

CBR and VBR operation Dirac supports both constant bit rate and variable bit rate operation.When the

low delay syntax is used, the bit rate will be constant for each area (Dirac slice) in a picture to ensure

constant latency.

Variable bit depths 8, 10, 12 and 16 bit formats are supported.

Multiple chroma sampling formats 444, 422 and 420 video are all supported.

Lossless and RGB coding A common toolset is used for both lossy and lossless coding. RGB coding is

supported via the YCoCg integer color transform.

Choice of wavelet filters A wide range of wavelet filters can be used to trade off performance against

complexity. The Daubechies (9,7) filter is supported for compatibility with JPEG2000. A Fidelity filter

is provided for improved resolution scalability.

Simple stream navigation The encoded stream contains picture numbers and forms a doubly-linked list

with each picture header indicating an offset to the previous and next picture, to support field-accurate

high-speed navigation with no parsing or decoding required.

2 Scope

This specification defines the Dirac video compression system through the stream syntax, entropy coding,

coefficient unpacking and picture decoding processes. The decoder operations are defined by means of a

mixture of pseudocode and mathematical operations.

This is version 2.2.3 of the Dirac specification. The document includes a full description of the Dirac stream

syntax and decoder operations.

http://sourceforge.net/projects/dirac
http://schrodinger.sourceforge.net

10

Dirac is a long-GOP video codec that uses wavelet transforms and motion compensation together with entropy

coding, that can be readily implemented in hardware or software. Dirac is a superset of the proposed SMPTE

VC-2 video codec standard which comprises the intra coding parts of this specification.

This version is compatible with and extends Version 1 by the addition of motion compensated coding. Version

1 corresponds exactly to the proposed SMPTE VC-2 video codec standard.

Subsequent versions of this specification may contain additional tools.

11

3 Conformance notation

Normative text is text that describes elements of the design that are indispensable or contains the conformance

language keywords: ‘shall’, ‘should’, or ‘may’. Informative text is text that is potentially helpful to the user,

but not indispensable, and can be removed, changed, or added editorially without affecting interoperability.

Informative text does not contain any conformance keywords.

All text in this document is, by default, normative, except: the Introduction, any section explicitly labelled as

‘Informative’ or individual paragraphs that are also indicated in this way.

The keywords ‘shall’ and ‘shall not’ indicate requirements strictly to be followed in order to conform to the

document and from which no deviation is permitted

The keywords, ‘should’ and ‘should not’ indicate that, among several possibilities, one is recommended as

particularly suitable, without mentioning or excluding others; or that a certain course of action is preferred

but not necessarily required; or that (in the negative form) a certain possibility or course of action i s deprecated

but not prohibited.

The keywords ‘may’ and ‘need not’ indicate courses of action permissible within the limits of the document.

The keyword ‘reserved’ indicates a provision that is not defined at this time, shall not be used, and may be

defined in the future. The keyword ‘forbidden’ indicates ‘reserved’ and in addition indicates that the provision

will never be defined in the future.

A conformant implementation according to this document is one that includes all mandatory provisions (‘shall’)

and, if implemented, all recommended provisions (‘should’) as described. A conformant implementation need

not implement optional provisions (‘may’) and need not implement them as described.

4 Normative References

Normative references are external documents referenced in normative text that are indispensable to the user.

Bibliographic references are references made in informative text or are those otherwise not indispensable to

the user.

The following standards contain provisions which, through reference in this text, constitute provisions of this

standard. At the time of publication, the editions indicated were valid. All standards are subject to revision,

and parties to agreements based on this standard are encouraged to investigate the possibility of applying the

most recent edition of the standards indicated below.

1. ITU-R BT.601-6: Studio Encoding Parameters of Digital Television for standard 4:3 and Wide-screen

16:9 Aspect Ratios.

2. ITU-R BT.709-5: Parameter values for the HDTV standards for production and international programme

exchange, 2002.

3. SMPTE 428.1: Digital Cinema Distribution Master (DCDM) Image Characteristics.

4. ITU-T H.264 (03/2005): Advanced video coding for generic audiovisual services. (Note: ISO/IEC 14496-

10:2005, Information Technology Coding of Audio-Visual Objects Part 10, is a direct equivalent to

ITU-T H.264.)

5. ITU-BT.1361: Worldwide unified colorimetry and related characteristics of future television and imaging

systems.

6. SMPTE 2036-1: Ultra High Definition Television Image Parameter Values For Program Production.

12

5 Definition of abbreviations and terms

This section defines the abbreviations and terms used in the Dirac specification.

5.1 Abbreviations

4CIF: Four times CIF

4SIF: Four times SIF

CIE: Commission internationale de l’éclairage (International Commission on Illumination)

CIF: Common Image Format

DC: Direct Current

DCI: Digital Cinema Initiatives

DWT: Discrete Wavelet Transform

HD(TV): High Definition (Television)

HH: High-High (subband)

HL: High-Low (subband)

IDWT: Inverse Discrete Wavelet Transform

ITU: International Telecommunications Union

LH: Low-High (subband)

LL: Low-Low (subband)

NTSC: National Television Systems Committee

QCIF: Quarter CIF

QSIF: Quarter SIF

SD(TV): Standard Definition (Television)

SIF: Source Input Format

VC: Video Codec

VLC: Variable Length Code

5.2 Terms

AC (sub)Band: any signal band that is not the DC sub-band.

Arithmetic coding: a form of entropy coding used by Dirac, which is used in addition to exp-Golomb coding.

Chroma: a pair of colour difference components. The term chroma is the direct equivalent to luma (see luma

definition below). In this specification, the term chroma is not the same as that used in composite colour

television. It is used to cover both gamma-corrected and non-gamma-corrected signals.

Codeblock: a rectangular array of wavelet coefficients within a component subband.

Codec: a truncation of the terms ”coder” and ”decoder”.

DC subband: the signal band that represents data composed from the lowest frequency band of a wavelet

transform (0-LL).

5.2 Terms 13

Discrete Wavelet Transform (DWT): a means of transforming an array of values into space-frequency

components through the use of a filter bank.

Entropy Coding: a term for describing any mathematical process used to encode data in a lossless manner,

intended to reduce the required bit rate.

Exp-Golomb: a form of variable-length code. This specification uses an interleaved variant.

Intra DC Prediction: the prediction of coefficients within the dc subband of intra pictures from neighbour-

ing coefficients..

Inverse Discrete Wavelet Transform (IDWT): the inverse of the DWT that converts an array of space-

frequency components back into an array of values.

Inverse Quantisation: a process whereby each sample of a sub-band has its signal range expanded by a

defined value.

Lifting: the name given to reducing a DWT filtering operations into a number of elementary filters, each

operating on half the samples. (Note: see Bibliography item ”Ripples in Mathematics”, chapter 3, for

more information.)

Low Delay: a term used to define a Dirac mode which can be used to compress video with a delay of less

than one frame duration.

Luma: the weighted sum of RGB components of colour video, which may or may not be gamma-corrected.

(This term is used to prevent confusion with the term luminance that is created only from linear light

levels as used in colour science.)

Parse Info header: identifies the beginning of major Dirac syntax elements (sequence start, picture, sequence

end, padding and auxiliary data) with defined parse code values.

Parsing: a process by which numerical and text strings within binary data are recognised and used to provide

syntactic meaning.

Picture: a single frame or field of video.

Quantisation: a process whereby each sample of a sub-band has its signal range compressed by a defined

value.

Quantiser: The defined value used for the purposes of quantisation or inverse quantisation.

Raster scan: any 2-dimensional array of samples, whether as video samples or as wavelet transformed values,

that is scanned in accordance with television systems; namely left to right, then top to bottom.

Sequence: the data contained in a Dirac sequence corresponds to a single video sequence with constant video

parameters as defined in Section 10. A Dirac sequence is preceded by a ‘Parse Info’ header that indicates

the beginning of the sequence with a unique parse code. A Dirac sequence can be extracted from a Dirac

bit-stream and decoded entirely independently.

Slice: a component part of the low-delay syntax that provides for compression of small parts (slices) of a

picture in order to reduce delay.

State: the set of current decoder variable values.

Stream: a concatenation of Dirac sequences.

Subband: the signal band that represents data composed from a single space-frequency band of a wavelet

transform.

14

6 Conventions

6.1 State representation

This standard uses a state model to express parsing and decoding operations. The state of the decoder/parser

shall be stored in the variable state. Individual elements of the decoder state (state variables) may be accessed

by means of named labels, e.g. state[VAR NAME] (i.e. state is a map, as defined in Section 6.3).

The decoder state shall be globally accessible within the decoder. Other variables, not declared as inputs to a

process, shall be local to that process. The parsing and decoding operations are defined in terms of modifying

the decoder state. The state variables need not directly correspond to elements of the stream, but may be

calculated from them taking into account the decoder state as a whole. For example, a state variable value

may be differentially encoded with respect to another value, with the difference, not the variable itself, encoded

in the stream.

The parsing process is defined by means of pseudocode and/or mathematical formulae. The conventions for

these elements are described in the following sections.

6.2 Number formats

Numbers without a prefix shall be interpreted as decimal numbers.

The prefix b indicates that the following value shall be interpreted as a binary natural number (non-negative

integer).

Example The value b1110100 is equal to the decimal value 116.

The prefix 0x shall indicate that the following value is to be interpreted as a hexadecimal (base 16) natural

number.

Example The value 0x7A is equal to the decimal value 122.

6.3 Data types

6.3.1 Elementary data types

Three basic types are used in the pseudo code:

Boolean - A Boolean variable that has only two possible values: True and False.

Integer - A positive or negative whole number or zero.

Label - a unique immutable value used in control structures and to access maps (see below).

6.3.2 Compound data types

Elementary and compound data types may be aggregated into a single compound data type. There are three

compound data type:

Set A collection of data types. A set is indicated by enclosing the elements within curly braces, for example

{a, b, c} represents a set containing the values a, b and c. An empty set may be indicated by {}. The

usual set-theoretic operations such as: ∪ (union), ∩ (intersection), ∈ (membership) apply to sets and the

other compound data types.

Map A set of data types whose elements are accessed by their corresponding label. For example, p[Y], p[C1], p[C2]

might be the values of the different video components of a pixel. The set of labels corresponding to the

elements of a map m can be accessed by args(m), so that, for example, args(p) returns{Y, C1, C2}.

6.4 Functions and operators 15

Array A collection of data types accessed by a non-negative integer index. This compound data type is

typically used to represent an array of variables. Elements of a 1-dimensional array a are accessed by

a[n] for n in the range 0 to length(a)− 1.

A compound data type may contain other compound data types. For example, a two dimensional array is

an array of one dimensional arrays. Elements of a 2-dimensional array are accessed by a[n][m] for 0 ≤ m ≤
(width(a) − 1), and 0 ≤ n ≤ (height(a) − 1). Compound data types may be more complex. For example,

picture data, pic, may be considered to be a map of arrays, where pic[Y] is a 2-dimensional array storing luma

data, and pic[C1] and pic[C2] are two-dimensional arrays storing chroma data.

Elements may be added to a map or array by assignment using the appropriate index (label or integer). For

example, a[7] = 2, adds element 7 to the array a, if a does not already contain element 7, then this element is

assigned the value 2.

6.4 Functions and operators

This section defines the functions and operators used in the pseudocode in this specification. Functions and

operators are similar but functions use the syntax, (arg1, arg2, . . .) whereas operators are simply placed before

or between operands, e.g. a + b. The difference is purely syntactic and is to correspond with conventional

mathematical notation.

6.4.1 Assignment

The assignment operation = applies to all variable types. After performing

a = b

the value of a shall become equal to that of b, and the value of b shall remain unchanged. For a set (or map

or array) this constitutes an element-wise copy i.e.

a[x] = b[x]

for all valid values of x.

6.4.2 Boolean functions and operators

The following functions and operators are defined for one or more Boolean arguments:

not (not a) or returns True for a boolean value a if and only if a is False

and (a and b) returns True if and only if a and b are both True. Operator ”and” may be used in pseudo-

code conditions to denote the logical AND between Boolean values, for example: if (condition1 and

condition2): etc.

or (a or b) returns True if either a or b are True, else it returns False. Operator ”or” may be used in

pseudo-code conditions to denote the logical OR between Boolean values, for example: if (condition1 or

condition2): etc.

majority Given a set, S = {s0, , sn−1} of Boolean values, majority(S) returns the majority condition. That

is, if the number of True values is greater than or equal to the number of False values, majority(S)

returns True, otherwise it returns False.

Boolean operations are to be distinguished from bitwise operations which operate on non-negative integer

values, and are defined in Section 6.4.3.

6.4 Functions and operators 16

6.4.3 Integer functions and operators

The following functions and operators are defined on integer values:

Absolute value |a| =
(

a if a ≥ 0

−a otherwise
.

Sign sign(a) is defined by

sign(a) =

8
><
>:

1 if a > 0

0 if a == 0

−1 if a < 0

Addition The sum of a and b is represented by a + b.

Subtraction a minus b is represented by a− b.

Multiplication a times b is represented, for clarity, by a ∗ b.

Integer division Integer division is defined for integer values a, b with b > 0 where: n = a//b is defined to

be the largest integer n such that

n ∗ b ≤ a

i.e. numbers are rounded towards -infinity. N.B. this differs from C/C++ conventions of round towards

0.

Remainder For integers a, b, with b > 0, the remainder a%b is equal to

a%b = a− (a//b) ∗ b

a%b always lies between 0 and b− 1.

Exponentiation For integers a, b, b > 0 ab is defined as a ∗ a ∗ . . . ∗ a (b times). a0 is 1.

Maximum max(a, b) returns the largest of a and b.

Minimum min(a, b) returns the smallest of values a and b.

Clip clip(a, b, t) clips the value a to the range defined by b (bottom) and t (top):

clip(a, b, t) = min(max(a, b), t)

Shift down For integers a, b, with b ≥ 0, a À b is defined as a//2b.

Shift up For integers a, b, with b ≥ 0, a ¿ b is defined as a ∗ 2b.

Integer logarithm m = intlog2(n), for n > 0, m is the integer such that 2m−1 < n ≤ 2m.

Mean Given a set S = {s0, s1, . . . , sn−1} of integer values, the integer unbiased mean, mean(S), is defined to

be

(s0 + s1 + . . . + sn−1 + (n//2))//n

Median Given a set S = {s0, s1, . . . , sn−1} of integer values the median, median(S), returns the middle value.

If t0 ≤ t1 ≤ . . . ≤ tn−1 are the values si placed in ascending order, this is

t(n−1)/2

if n is odd and

mean({t(n−2)/2, tn/2}) if n is even. If S = ∅, median(S) returns 0.

The following bitwise operations are defined on non-negative integer values:

6.4 Functions and operators 17

& Logical AND is applied between the corresponding bits in the binary representation of two numbers, e.g.

13&6 is b1101&b110, which equals b100, or 4.

| Logical OR is applied between the corresponding bits in the binary representation of two numbers, e.g. 13|6
is b1101—b110, which equals b1111, or 15.

∧ Logical XOR is applied between the corresponding bits in the binary representation of two numbers, e.g.

13 ∧ 6 is b1101 ∧ b110, which equals b1011, or 11.

& = a& = b is equivalent to a = (a&b).

| = a| = b is equivalent to a = (a|b).

∧ = a∧ = b is equivalent to a = (a ∧ b).

Bitwise-not is not defined for integers to avoid ambiguity concerning leading zeroes

The following logical operators are defined for integer and boolean arguments:

== Test of equality of two variables. a == b is True if and only if the value of a equals the value of b.

!= Not equal to. a! = b is equivalent to not (a == b)

The following logical operators are defined for integer arguments only:

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

The following combined assignment operators are defined for integer arguments: Operators +,−, ∗, //, %,À
,¿, &, |,∧, may be combined with the assignment operator (as for the Boolean operators &, |, and ∧ above).

For example a+ = b is equivalent to a = (a + b).

6.4.4 Array and map functions and operators

The following functions and operators are defined for sets, maps and arrays.

Indexing For an array a, a[index] returns an element of a. If a is a map the index shall be a label, else if a

is an array the index shall be an integer.

Scalar Assignment Where the notation a = 0 is used for an array of integer values, it means ”set all elements

of the array to zero”.

Insertion a[index] = b inserts a copy of b into set a if the element does not already exist.

Tokens for a map a, args(a) returns the set of the indexing tokens.

Length for a one dimensional array a, length(a) returns the number of elements in the array.

Width for a two dimensional array a, width(a) returns the width the array. The width is the number of scalar

elements corresponding to the right most array index.

Height for a two dimensional array a, height(a) returns the height the array. The height is the number of

one dimensional arrays in the two dimensional array and the ”height” dimension corresponds to the left

most array index.

6.5 Pseudocode 18

6.4.5 Precedence and associativity of operators

To avoid any confusion over the order of operator precedence, every equation makes extensive use of the

expression operators ”(” and ”)”. All operations recursively execute the innermost expression(s) first until

the calculation has been completed. In cases where the expression operators do not make clear the order of

precedence, the following table defines the descending order of operator precedence and the associativity of

each operator. [Table tbc]

6.5 Pseudocode

Most of the normative specification is defined by means of pseudocode. The syntax is intended to be both

precise and descriptive; the pseudocode is not intended to form the basis for the implementation of a Dirac

decoder.

All processing defined by this standard is precise and the entire specification can be implemented using only

the data types, functions and operators defined herein. That is, no operations on ”real” or ”floating point”

numbers are required. All operations shall be implemented with sufficiently large integers so that overflow

cannot occur.

The type of variables in the pseudocode is not explicitly declared. A variable assumes a type when it is assigned

a value, which shall always have a defined type.

6.5.1 Processes and functions

Decoding and parsing operations are specified by means of processes – a series of operations acting on input

data and global variable data. A process can also be a function, which means it returns a value, but it need

not do so. So a process taking in variables in1 and in2 looks like:

foo(in1, in2) : Ref

op1(in1)

op2(in2)

. . .

Whilst a function process looks like:

bar(in1, in2) : Ref

op1(in1)

foo(in1, in2) 6.5.1

. . .

return out1

The right-hand column in the pseudocode representation contains a cross-reference to the section in the spec-

ification containing the definition of other processes used at that line.

6.5.2 Variables

All input variables are deemed to be passed by reference in this specification. This means that any modification

to a variable value that occurs within a process also applies to that variable within the calling process even

if it has a different name in the calling process. One way to understand this is to envisage variable names as

pointers to workspace memory.

For example, if we define foo and bar by

6.5 Pseudocode 19

foo() : Ref

num = 0

bar(num)

state[var name] = num

and

bar(val) : Ref

val = val + 1

then at the end of foo, state[var name] has been set to 1.

The only global variables are the state variables encapsulated in state. If a variable is not declared as an input

to the process and is not a state variable, then it is local to the function.

If a process is particularly complex, it may be broken into a number of steps with intermediate discussion.

This is signalled by appending and prepending “. . .” to the parts of the pseudocode specification:

foo() : Ref

code

. . .

[text]

. . .

morecode

. . .

[text]

. . .

evenmorecode

The intervening text may define or modify variables used in the succeeding pseudocode, and must be considered

as a normative part of the specification of the process. This is done as it is sometimes much more clear to split

up a long and complicated process into a number of steps.

6.5.3 Control flow

The pseudocode comprises a series of statements, linked by functions and flow control statements such as if,

while, and for.

The statements do not have a termination character, unlike the ; in C for example. Blocks of statements are

indicated by indentation: indenting in begins a block, indenting out ends one.

Statements that expect a block (and hence a following indentation) end in a colon.

if The if control evaluates a boolean or boolean function, and if true, passes the flow to the block of following

statement or block of statements. If the control evaluates as false, then there is an option to include one or

more else if controls which offer alternative responses if some other condition is true. If none of the preceding

controls evaluate to true, then there is the option to include an else control which catches remaining cases.

6.5 Pseudocode 20

. . .

if (control1):

block1

else if (control2):

block2

else if (control3):

block3

else:

block4

The if and else if conditions are evaluated in the order in which they are presented. In particular, if control1

or control2 is true in the preceding example, block3 will not be executed even if control3 is true; neither will

block4.

for The for control repeats a loop over an integer range of values. For example,

. . .

for i = 0 to n− 1:

foo(i)

calls foo() with value i, as i steps through from 0 to n− 1 inclusive.

for each The for each control loops over the elements in a list:

. . .

for each c in Y, C1, C2:

block

for such that The for such that control loops over elements in a set which satisfy some condition:

. . .

for a ∈ A such that control:

block

This may only be used when the order in which elements are processed is immaterial.

while The while control repeats a loop so long as a switch variable is true. When it is false, the loop breaks

to the next statement(s) outside the block.

. . .

while (condition):

block1

block2

21

7 Overall specification

[TBC - this will contain a summary of contents]

22

8 Video formats

This section defines the video formats supported by this specification.

A selection of widely used video formats are defined in normative Annex C. These video formats are charac-

terized by their widespread use in television, cinema and multimedia applications.

This list is not exhaustive, however, and Dirac is a general purpose video compression system. These predefined

formats are base formats that may be modified element by element to support a much larger range of possible

video formats. Support is provided by the sequence parameters of the bitstream (Section 10) for signalling

both the base video format and any modifications for complete characterization of the video format metadata.

8.1 Colour model

Dirac supports any video format that codes the raw image colors in a luma (grey-level) component with two

associated chroma (color difference) components. These components are referred to as Y , C1 and C2.

In ITU defined systems (including ITU-BT.709, ITU-R BT.1361 and ITU-BT.1700), the Y , C1 and C2 values

shall relate to the EY , EU and EV video components respectively. These video components are also widely

referred to as Y, U, V and Y, CB , CR.

In the ITU-T H.264 reversible color transform, the Y , C1 and C2 values shall correspond to the video compo-

nents Y, CO, CG.

Note: Coding using Y, CO, CG provides a simple reversible conversion to and from RGB components by

using lossless integer transforms. The use of Y, CO, CG supports lossless coding of RGB video and allows Dirac

to be treated as an RGB compression system for applications that require this feature.

8.2 Interlace

Dirac supports both interlace and progressive formats. Interlace formats may be either top field first or bottom

field first.

Dirac codes pictures where a picture may be a frame or a field. Fields consist of sets of alternate lines of video

frames (even and odd lines). A pair of fields constituting a frame may correspond to distinct time intervals

(true interlace scanning) or to the same time interval (progressive segmented frames). Hence the configuration

of frame/field coding is independent of whether the video format is interlaced or progressive.

8.3 Component sampling

Chroma components C1 and C2 may be coded with the same dimensions as the Y component (4:4:4) sampling,

or with half-width (4:2:2) or half-dimension (4:2:0) sampling.

Y , C1 and C2 picture components shall be sampled at the same temporal instant.

Note: All pictures are considered as individual entities whether or not all lines were sampled at the same

instant. In video sequences that are not frame-based, such as 30fps interlaced video carrying 24fps progressive

images in a 3:2 pull-down sequence, the compression performance may not be optimum. In such cases, a

pre-processor may provide an encoder with a more easily compressed source such as the original 24fps source

pictures. Such pre-processing does not form any part of this specification.

8.4 Bit resolution

The bit depth of each component sample is, in principle, unrestricted. Application-specific codecs may restrict

the supported bit depth to a single value or a limited range of values.

8.5 Picture frame size and rate 23

Video is represented internally within the decoder specification as a bipolar (signed integer) signal. Video is

presented at the video interface as an unsigned integer value by addition of an offset to these values (Section

15.10). Metadata concerning black level and white level is transmitted within the data stream (Section 10.3.8),

but is not enforced at the decoder video interface: output video may undershoot or overshoot these values.

8.5 Picture frame size and rate

The frame size and frame rate is, in principle, unrestricted. Application-specific codecs may restrict the

supported frame size and frame rate to a single value or a limited range of values, and compliance to a given

level implies constraints on the values as specified in Annex D.

24

9 Stream syntax

This section specifies the overall structure of Dirac streams. Subsequent sections define the processes for

parsing pictures, and Section 15 specifies how pictures are decoded.

9.1 Pseudocode

The parsing process is normatively defined using pseudocode and/or mathematical formulae. The definitions

of stream syntax operations and pseudocode shall be as defined in section 6.

The Dirac stream syntax uses a state model to express the stream in a way that can be parsed and used for

decoding operations. The parsing and decoding operations are specified in terms of modifying the decoder

state according to the data extracted from the Dirac stream. The state of the decoder is stored in the global

variable state. This is a map (Section 6.3) and individual elements are accessed by means of named labels, e.g.

state[VAR NAME]. The state variables comprise the parameters that shall be used in parsing and decoding a

picture. The variable state is a global variable and shall be accessible to all decoder functions and processes.

All other variables shall be local to the function or process in which they are defined.

Decoder state variables (that is elements of state) may not directly correspond to parts of the stream, but

may be calculated from them taking into account the decoder state as a whole. For example, a state variable

value may be differentially encoded with respect to another value, with the difference, not the variable itself,

encoded in the stream. Some parameters are encoded in the stream as indices to tables of values. The indices

are coded as variable length integers. This allows the tables to be extended to contain new entries, in future

versions of this specification, without changing the syntax.

9.2 Stream

A stream is a concatenation of Dirac sequences. The process for parsing a stream is to parse all sequences it

contains. A Dirac sequence shall be decoded as a separate entity.

9.3 Sequence

The data contained in a Dirac sequence corresponds to a single video sequence with constant video parameters

as defined in Sections 10.3. A sequence A Dirac sequence can be excised from a Dirac stream and decoded

entirely independently.

A Dirac sequence shall comprise an alternating sequence of parse info headers and data units. The first data

unit shall be a sequence header, and further sequence headers may be inserted at any data unit point in the

sequence . The process for parsing a Dirac sequence shall be as defined below:

9.4 Parse Info headers 25

parse sequence() : Ref

state = {}
state[REF PICTURES] = {}
parse info() 9.6

video params = sequence header() 10

parse info() 9.6

while (is end of sequence() == False): 9.6.1

if (is seq header() == True): 9.6.1

video params = sequence header() 10

else if (is picture()): 9.6.1

picture parse() 11.1

else if (is auxiliary data()): 9.6.1

auxiliary data() 9.5.1

else if (is padding()): 9.6.1

padding() 9.5.2

parse info() 9.6

Each Dirac sequence shall start and end with a parse info header.

9.4 Parse Info headers

Parse info headers shall contain a 32 bit code so that the decoder can be synchronized with the stream. They

are defined in section 9.6. The parse info headers support navigating through the stream without the need to

decode any data units. Each parse info header contains pointers to the location of the next and previous parse

info headers within the stream. The stream may thus be thought of as a doubly linked list of data units. Each

parse info headers contains a code that identifies the type of data held in the following data unit. This is the

only information contained within the parse info headers that is needed to decode the sequence.

9.5 Data units

Data units may be one of:

• a sequence header,

• a picture,

• auxiliary data

• padding data.

A sequence header shall contain metadata describing the coded sequence and metadata needed to decode the

stream. The sequence header is defined in Section 10. The first data unit in a sequence shall be a sequence

header. To support reverse-parsing applications, the last data unit in a sequence should also be a sequence

header.

Each sequence shall contain at least one picture and at least one sequence header. The first picture after each

sequence header (if there is one) shall be an intra picture.

If a sequence contains more than one sequence header, the data in each sequence header shall be the same

(byte-for-byte identical) within the sequence.

Each picture, whether a frame or field, may be coded with a dependency on prior pictures in the stream

(reference pictures).

A picture data unit shall contain sufficient data to decode a single picture (frame or field of video), subject to

having parsed a sequence header within the sequence and decoded any reference pictures.

9.6 Parse info header syntax 26

Pictures within a sequence shall either all be fields or all be frames. Where pictures are fields, a sequence shall

contain an even number of pictures, comprising a whole number of frames.

Auxiliary data and padding data do not contribute to the decoding process and so may be discarded.

Auxiliary and padding data units comprise undefined data for the purposes of this standard. These data units

(together with the correct preceding parse info header) may be interposed at any point in the stream, but may

safely be skipped by a compliant decoder. For the purposes of subsequent parts of this standard, the potential

presence of auxiliary and padding data shall be ignored.

Padding data units shall not be used for any form of auxiliary data service or content. They may be used by

an encoder, where required, to insert additional data to assist in complying with constant or constrained bit

rate requirements.

9.5.1 Auxiliary data

The auxiliary data() process for reading auxiliary data shall be as follows:

auxiliary data() : Ref

byte align()

for i = 1 to state[NEXT PARSE OFFSET]− 13:

read byte

9.5.2 Padding data

The padding() process for reading padding data shall be as follows:

padding() : Ref

byte align()

for i = 1 to state[NEXT PARSE OFFSET]− 13:

read byte

9.6 Parse info header syntax

The parse info header provides information identifying the subsequent data unit type and length codes deter-

mining the number of bytes from the current parse info header to the next and previous parse info headers.

The parse info header shall be byte-aligned. It shall occur:

• at the beginning of a sequence

• at the end of a sequence

• before each data unit

The parse info header shall consist of 13 whole bytes. Thus subsequent data elements shall be byte aligned.

The value of the parse code, which is a component of the parse info header, shall be used to determine the

type and format of the subsequent data unit.

The parse info() process for reading parse info headers shall be as follows:

parse info() : Ref

byte align()

state[PARSE INFO PREFIX] = read uint lit(4)

state[PARSE CODE] = read byte()

state[NEXT PARSE OFFSET] = read uint lit(4)

state[PREVIOUS PARSE OFFSET] = read uint lit(4)

9.6 Parse info header syntax 27

The Parse Info parameters shall satisfy the following constraints:

• state[PARSE INFO PREFIX] shall be set to be 0x42 0x42 0x43 0x44, which is the character string

“BBCD” as expressed by ISO/IEC 646.

• state[PARSE CODE] shall be one of the supported values set out in Table 9.1

• state[NEXT PARSE OFFSET] shall be the number of bytes from the first byte of the current Parse

Info header to the first byte of the next Parse Info header, if there is one. If there is no subsequent Parse

Info header, it shall be be zero.

• state[PREVIOUS PARSE OFFSET] shall be the number of bytes from the first byte of the current Parse

Info header to the first byte of the previous Parse Info header, if there is one. If there is no subsequent

Parse Info header, it shall be be zero.

Consequently, the previous parse offset value of the current parse info header shall equal the next parse offset

value of the previous parse info header, if there is one.

Note:

1. The parse info prefix, next parse offset and previous parse offset values are provided to support navigation

and are not required to decode the sequence. See section 14.1.

2. The parse offset values will normally be non-zero. However at the beginning and end of a stream there

is no preceding or following parse info header respectively. In these circumstances the value of the offset

is zero: these are the only places where zero values can occur.

9.6.1 Parse code values

Parse code values shall be divided into three sets: generic, core syntax and low delay syntax.

The value of parse codes allowed within the Dirac syntax shall be as shown in Table 9.1

state[PARSE CODE] Bits Description

Number of

Reference

Pictures

Generic

0x00 0000 0000 Sequence header –

0x10 0001 0000 End of Sequence –

0x20 0010 0000 Auxiliary data –

0x30 0011 0000 Padding data –

Core syntax

0x0C 0000 1100 Intra Reference Picture (arithmetic coding) 0

0x08 0000 1000 Intra Non Reference Picture (arithmetic coding) 0

0x4C 0100 1100 Intra Reference Picture (no arithmetic coding) 0

0x48 0100 1000 Intra Non Reference Picture (no arithmetic coding) 0

0x0D 0000 1101 Inter Reference Picture (arithmetic coding) 1

0x0E 0000 1110 Inter Reference Picture (arithmetic coding) 2

0x09 0000 1001 Inter Non Reference Picture (arithmetic coding) 1

0x0A 0000 1010 Inter Non Reference Picture (arithmetic coding) 2

Low-delay syntax

0xCC 1100 1100 Intra Reference Picture 0

0xC8 1100 1000 Intra Non Reference Picture 0

Table 9.1: Parse codes

9.6 Parse info header syntax 28

Future versions of this specification may introduce new parse codes. In order that decoders complying with

this version of the specification may decode future versions of the coded stream, the decoder shall discard data

units that immediately follow parse info blocks containing unknown parse codes.

The parse codes shall be associated with a group of functions, listed below, which shall determine the type

of subsequent data and the parsing and decoding processes which shall be used. All functions shall return a

boolean, except for num refs() which shall returns an integer:

is seq header() : Ref

return state[PARSE CODE] == 0x00

is end of sequence() : Ref

return state[PARSE CODE] == 0x10

is auxiliary data() : Ref

return (state[PARSE CODE]&0xF8) == 0x20

is padding() : Ref

return state[PARSE CODE] == 0x30

is picture() : Ref

return ((state[PARSE CODE]&0x08) == 0x08)

is low delay() : Ref

return ((state[PARSE CODE]&0x88) == 0x88)

is core syntax() : Ref

return ((state[PARSE CODE]&0x88) == 0x08)

using ac() : Ref

return ((state[PARSE CODE]&0x48) == 0x08)

is reference() : Ref

return ((state[PARSE CODE]&0x0C) == 0x0C)

is non reference() : Ref

return ((state[PARSE CODE]&0x0C) == 0x08)

num refs() : Ref

return (state[PARSE CODE]&0x03)

is intra() : Ref

return is picture() and (num refs() == 0)

is inter() : Ref

return is picture() and (num refs() > 0)

9.6.2 Parse code value rationale (Informative)

The rationale for the parse code values in Table 9.1 is as follows:

• The MS bit (bit 7) is used to indicate the picture syntax (core or low delay syntax) and only applies to

pictures. Core syntax codes whole frames rather than slices. Low delay syntax codes slices not frames.

• The second MS bit (bit 6) is used to indicate whether arithmetic coding is used and only applies to

pictures. Core syntax may optionally use arithmetic coding. Low delay syntax does not use arithmetic

coding. The permutation of the two bits which might indicate low delay syntax with arithmetic coding

is reserved. Arithmetic coding is not supported on Inter pictures.

9.6 Parse info header syntax 29

• The next three MS bits (bits 5, 4 and 3) indicate the type of data unit following the parse info unit. Bit

3 indicates whether it is a picture or non-picture data unit. Bits 5 and 4 indicate the 4 other parse codes.

• The three LS bits (bits 2, 1 and 0) indicate picture types. Bit 2 indicates whether a picture is a reference

picture or not. Bits 0 and 1 indicate the number of references a picture has for motion compensation

purposes: if these are both 0, the picture is an Intra picture.

30

10 Sequence header

This section defines the structure of the sequence header syntax. The sequence header shall be byte aligned.

Parsing this header consists of reading the sequence parameters (parse parameters, base video format, source

parameters and picture coding mode) and initializing the decoder parameters. The decoder parameters are

initialized in the set coding parameters() process (Section 10.5).

The sequence header shall remain byte identical throughout a sequence.

The process for parsing the sequence header shall be as follows:

sequence header() : Ref

byte align()

parse parameters() 10.1

base video format = read uint() 10.2

video params = source parameters(base video format) 10.3

picture coding mode = read uint() 10.4

set coding parameters(video params, picture coding mode) 10.5

return video params

Parse parameters contain information a decoder may use to determine whether it is able to parse or decode

the stream. Parse parameters are not used to decode the stream.

The base video format is a numerical index denoting a default set of parameters that describe the video source.

For many common video formats the predefined values indicated by the base video format and defined in

Annex C, will be sufficient without the need for further metadata to be present in the stream. However, to

provide flexibility, source parameters may override the parameters indicated by the base video format (with

the exception of the top field first flag).

Source parameters are parameters that describe the source video, not all of which are required to decode the

stream. The source parameters are needed by applications that use the decoded video and so should be made

available to them.

The picture coding mode indicates whether the video has been coded as a sequence of frames or fields.

Once the base video format, source parameters and picture coding mode have been read from the stream the

information they contain may be decoded to provide the parameters used for decoding pictures. It is the

purpose of the set coding parameters() process to initialize these parameters.

Note: Note that video parameters indicate whether the video sequence is interlaced or progressive. In

particular a change from interlaced to progressive video, or vice-versa, necessitates that the Dirac sequence

be terminated and a new sequence begun. The coding mode indicates whether the pictures within a Dirac

sequence are fields or frames. Note that progressive video may still be encoded as fields, to provide backward

compatibility with pseudo-progressive frame (PSF) video transmission.

The video parameters are not used by the Dirac decoder. Video parameter values should be made available

using appropriate interfaces and standards to any downstream video processing device or display, but their use

and interpretation by other devices is not specified in this standard. Neverthless, Annex F specifies the video

systems model that should be used for the interpretation of video parameters.

10.1 Parse parameters

This section specifes the structure of the parse parameters, which is as follows:

10.2 Base video format 31

parse parameters() : Ref

state[VERSION MAJOR] = read uint()

state[VERSION MINOR] = read uint()

state[PROFILE] = read uint()

state[LEVEL] = read uint()

Parse parameter data shall be constant (byte-for-byte identical) for all instances of the sequence header within

a Dirac sequence. For stream interchange, parse paramter data should also be constant across all sequences

within a stream.

10.1.1 Version number

The major version number shall define the version of the syntax with which the stream complies. A decoder

complies with a major version number if it can parse all bit streams that comply with that version number.

Decoders that comply with a major version of the specification may not be able to parse the bit stream

corresponding to a later specification.

Depending on the profile and level defined, a decoder compliant with a given major version number may still

not be able to decode fully all parts of a stream.

All minor versions of the specification shall be functionally compatible with earlier minor versions with the

same major version number. Later minor versions may contain corrections, clarifications, and removal of

ambiguities. Later minor version numbers shall not contain new features or new normative provisions.

Functional compatibility shall imply that a decode with the same major version number but a later minor

version number than that contained in a stream, shall be capable of decoding the stream and producing

pictures substantially equivalent to that of a decoder with the same version numbers as the stream.

The major version number of a stream compliant with this version of the Dirac specification shall be 2.

The minor version number of a stream compliant with this version of the Dirac specification shall be 2.

10.1.2 Profiles and levels

A profile shall define the toolset that is sufficient to decode a sequence.

A level shall determine decoder resources (picture and data buffers; computational resources) sufficient to

decode a sequence, including the sizes state[RB SIZE] and state[DPB SIZE] of the reference picture and

decoded picture buffers.

Applicable values of profile and level and the variables they set are specified in Annex D.

10.2 Base video format

The value of base video format decoded in parsing the sequence header shall be an index into table 10.1. For

each entry in the table parameters are defined, in annex C, indicating base video parameters corresponding to

one of a set of predefined formats.

The selection of a base format represents an initial approximation to the video format which can then be

refined to capture all the video format characteristics accurately by overriding parameters as necessary. In

particular, the predefined video formats listed in table 10.1 do not represent all the video formats supported

by Dirac; any video format parameters may in principle be defined and supported by Dirac sequence.

These base parameters may be modified by subsequent metadata present in the stream, with the exception of

the top field first parameter which shall only be set by the base video format (see Section 10.3.4).

10.3 Source parameters 32

Video format index Video format description

0 Custom Format

1 QSIF525

2 QCIF

3 SIF525

4 CIF

5 4SIF525

6 4CIF

7 SD 480I-60 (525 Line 59.94 Field/s Standard Definition)

8 SD 576I-50 (625 Line 50 Field/s Standard Definition)

9 HD 720P-60 (720 Line 59.94 Frame/s High Definition)

10 HD 720P-50 (720 Line 50 Frame/s High Definition)

11 HD 1080I-60 (1080 Line 60 Field/s High Definition)

12 HD 1080I-50 (1080 Line 50 Field/s High Definition)

13 HD 1080P-60 (1080 Line 59.94 Frame/s High Definition)

14 HD 1080P50 (1080 Line 50 Frame/s High Definition)

15 DC 2K-24 (2K D-Cinema, 24fps)

16 DC 4K-24 (4K D-Cinema, 24fps)

17 UHDTV 4K-60 (2160-line 59.94 Frame/s UHDTV)

18 UHDTV 4K-50 (2160-line 50 Frame/s UHDTV)

19 UHDTV 8K-60 (4320-line 59.94 Frame/s UHDTV)

20 UHDTV 8K-50 (4320-line 50 Frame/s UHDTV)

Table 10.1: Dirac predefined video formats

Note:

1. The custom format is intended for use when no other suitable base video format is available from the

table. Video format defaults will still be set as per annex C, but these are token values which are expected

to be almost wholly overridden by the subsequent source parameters.

2. The base video format ought to be as close as possible to the desired video format, especially in terms

of picture dimensions and frame rate.

3. True 60Hz formats can be encoded by overriding the frame rate parameters (section 10.3.5).

10.3 Source parameters

The source parameters are intended to indicate the format of the video that was originally encoded. They

provide metadata that indicates how the decoded video should be displayed.

The source parameters shall comprise frame size, chroma sampling format, scan format, frame rate, pixel

aspect ratio, clean area, signal range and colour specification. The frame size, chroma sampling format,

scanning format and the signal range are required to decode the video. Display and downstream processing

falls outside the scope of this specification, hence the interpretation of the other parameters (not required to

decode the video) is not normatively defined, with the exception of frame rate (section 10.3.5). The frame rate

may impose requirements on compliant decoders for a given level and profile (Annex D).

Source parameter data shall remain constant throughout a Dirac sequence.

Default values for the source parameters shall be derived from the video format, as defined in annex C. These

default values shall be the source parameters unless they are overridden with alternative values encoded as

part of the Source Parameters part of the stream.

The source parameters() process shall return a structure defining the video source parameters. It shall be

10.3 Source parameters 33

defined as follows:

source parameters(base video format) : Ref

video params = set source defaults(base video format) 10.3.1

frame size(video params) 10.3.2

chroma sampling format(video params) 10.3.3

scan format(video params) 10.3.4

frame rate(video params) 10.3.5

pixel aspect ratio(video params) 10.3.6

clean area(video params) 10.3.7

signal range(video params) 10.3.8

colour spec(video params) 10.3.9

return video params

10.3.1 Setting source defaults

The function that sets the default values of the source video parameters shall take the video format index

as an argument. That is, the signature of this function is: set source defaults(base video format) where

base video format is an unsigned integer. The function returns a map of source video parameters.

The source video parameters shall be set, based on the video format index, as defined in annex C. The

parameters set by this function shall be: frame size, sampling format (4:4:4, 4:2:2 or 4:2:0), scan format

(progressive or interlace), frame rate, pixel aspect ratio, clean area, signal range, colour specification. The

labels used to access the map returned by the function shall be as defined in the subsequent sections that

specify how to override the base video source parameters.

10.3.2 Frame size

The frame size decoding process shall be as follows:

frame size(video params) : Ref

custom dimensions flag = read bool()

if (custom dimensions flag == True):

video params[FRAME WIDTH] = read uint()

video params[FRAME HEIGHT] = read uint()

Thus is custom dimensions flag is True, the frame size determined by the base video format shall be over-

ridden.

The frame width shall correspond to the width of the coded video, in pixels, that is coded in the stream. The

frame height shall correspond to the number of lines per frame in the coded video, irrespective of whether the

coded video is progressively scanned or is interlaced.

10.3.3 Chroma sampling format

The chroma sampling format decoding process shall be as follows:

chroma sampling format(video params) : Ref

custom chroma format flag = read bool()

if (custom chroma format flag == True):

video params[CHROMA FORMAT INDEX] = read uint()

Thus if custom chroma format flag is True then the base video format value is overridden.

The decoded value of video params[CHROMA FORMAT INDEX] shall lie in the range 0 to 2 with values

10.3 Source parameters 34

as defined in table 10.2:

video params[CHROMA FORMAT INDEX] Chroma format

0 4:4:4

1 4:2:2

2 4:2:0

Table 10.2: Supported chroma sampling formats

The chroma sampling format shall be used to determine the width and height of the chroma components of

the coded video as described in Section 10.5.1 below.

10.3.4 Scan format

The scan format parameter shall indicate whether the source video represents progressive frames or interlaced

fields.

The scan format decoding process shall be defined as follows:

scan format(video params) : Ref

custom scan format flag = read bool()

if (custom scan format flag == True):

video params[SOURCE SAMPLING] = read uint()

If the custom scan format flag is set to True, the source sampling parameter defined by the base video format

values shall be overridden by new values.

If video params[SOURCE SAMPLING] is set to 0, then the source video shall be progressively sampled. If

it is 1, then the source video shall be interlaced. Values greater than 1 shall be reserved.

If the source video is interlaced, then video params[TOP FIELD FIRST] shall be True if the top line of the

frame is in the earlier field, else video params[TOP FIELD FIRST] shall be False. This shall be set only

by the base video format and cannot be overridden in the source parameters.

Both interlaced and progressive video may be coded as fields or frames.

10.3.5 Frame rate

The frame rate value (in frames per second) shall be video params[FRAME RATE NUMER] divided by

video params[FRAME RATE DENOM]

The process for decoding the frame rate parameters shall be as follows:

frame rate(video params) : Ref

custom frame rate flag = read bool()

if (custom frame rate flag == True):

index = read uint()

if (index == 0):

video params[FRAME RATE NUMER] = read uint()

video params[FRAME RATE DENOM] = read uint()

else:

preset frame rate(video params, index)

If custom frame rate flag is set to True the frame rate parameters set by the base video format shall be

overridden by new values.

The decoded value of index shall fall in the range 0 to 10.

10.3 Source parameters 35

If index is 0, then the frame rate numerator and denominator shall be individually defined by unsigned integer

values.

For values greater than 0, the process preset frame rate(video params, index) shall set frame rate elements

of video params according to table 10.3.

index Numerator Denominator

1 24000 1001

2 24 1

3 25 1

4 30000 1001

5 30 1

6 50 1

7 60000 1001

8 60 1

9 15000 1001

10 25 2

Table 10.3: Available preset frame rate values

Note: Note that what is encoded is frame rate, not picture rate. If the video is coded as fields, then picture

rate is twice the encoded frame rate.

10.3.6 Pixel aspect ratio

The pixel aspect ratio shall be defined as the ratio of the parameters:

video params[PIXEL ASPECT RATIO NUMER] : video params[PIXEL ASPECT RATIO DENOM]

The process for decoding the pixel aspect ratio parameters shall be defined as follows:

pixel aspect ratio(video params) : Ref

custom pixel aspect ratio flag = read bool()

if (custom pixel aspect ratio flag == True):

index = read uint()

if (index == 0):

video params[PIXEL ASPECT RATIO NUMER] = read uint()

video params[PIXEL ASPECT RATIO DENOM] = read uint()

else:

preset pixel aspect ratio(video params, index)

If custom pixel aspect ratio flag is set to True, the pixel aspect ratio defined by the default values shall be

overridden by the new values defined by the index value.

The decoded value of index shall fall in the range 0 to 6.

If the value of index is 0, then the pixel aspect ratio numerator and denominator shall be individually defined

by unsigned integer values.

If index > 0, the process preset pixel aspect ratio(video params, index) shall set the pixel aspect ratio

according to table 10.4.

Note:

1. The pixel aspect ratio value defines the intended ratio of the pixel sampling such that the viewed picture

has no geometric distortion. The pixel aspect ratio of an image is the ratio of the spacing of horizontal

10.3 Source parameters 36

index Numerator Denominator

1 (Square Pixels) 1 1

2 (525-line systems) 10 11

3 (625-line systems) 12 11

4 (16:9 525-line systems) 40 33

5 (16:9 625-line systems) 16 11

6 (reduced horizontal resolution) 4 3

Table 10.4: Available preset pixel aspect ratio values

samples (pixels) to the spacing of vertical samples (picture lines) on the display device. Pixel aspect

ratios (PARs) are fundamental properties of sampled images because they determine the displayed shape

of objects in the image. Failure to use the right PAR will result in distorted images, for example circles

will be displayed as ellipses etc.

2. The pixel apect ratios shown in table 10.4 assume a 704x480 active picture for 525-line systems and a

704x576 active picture for 625-line systems.

3. Some video processing tools require an image aspect ratio. This can be derived from the pixel aspect

ratio by multiplying the ratio of horizontal to vertical pixels by the pixel aspect ratio. So, for example,

for a 704 x 480 line picture, with a pixel aspect ratio of 10:11 the image aspect ratio is (704 x 10)/(480

x 11) which is exactly 4:3.

10.3.7 Clean area

The process for decoding the clean area parameters shall be as follows:

clean area(video params) : Ref

custom clean area flag = read bool()

if (custom clean area flag == True):

video params[CLEAN WIDTH] = read uint()

video params[CLEAN HEIGHT] = read uint()

video params[CLEAN LEFT OFFSET] = read uint()

video params[CLEAN TOP OFFSET] = read uint()

The following restrictions shall apply:

• video params[CLEAN WIDTH]+video params[CLEAN LEFT OFFSET] ≤ video params[FRAME WIDTH]

• video params[CLEAN HEIGHT]+video params[CLEAN TOP OFFSET] ≤ video params[FRAME HEIGHT]

Note: The meaning and use of clean area are application defined: it might correspond to that picture which

is to be displayed, or define a “container” within a picture of larger size.

10.3.8 Signal range

The signal range parameters indicate how the signal range of the picture component data, decoded by the

Dirac decoder, should be adjusted prior to the colour matrixing operations (described in informative Annex

F.1.3).

The signal range parameters shall also be used to determine the luma depth and chroma depth parameters

(Section 10.5.2) and the resulting clipping levels applied to the decoded video (Section 15.9).

The process for decoding the signal range parameters is as follows:

10.3 Source parameters 37

signal range(video params) : Ref

custom signal range flag = read bool()

if (custom signal range flag == True):

index = read uint()

if (index == 0):

video params[LUMA OFFSET] = read uint()

video params[LUMA EXCURSION] = read uint()

video params[CHROMA OFFSET] = read uint()

video params[CHROMA EXCURSION] = read uint()

else:

preset signal ranges(video params, index)

If custom signal range flag is set to True then the base video format signal range parameters shall be

overridden by new values.

The decoded value of index shall fall in the range 0 to 4.

If index > 0 the process preset signal ranges(video params, index) shall set the signal range elements of

video params according to table 10.5.

index Luma offset Luma excursion Chroma offset Chroma excursion

1 (8 Bit Full Range) 0 255 128 255

2 (8 Bit Video) 16 219 128 224

3 (10 Bit Video) 64 876 512 896

4 (12 Bit Video) 256 3504 2048 3584

Table 10.5: Available signal range presets

Note: Decoded video is represented within the decoder specification as bi-polar signals. An offset is added

when video is output so that it is represented by unsigned integer values.

10.3.9 Color specification

The colour specification shall consist of three component parts:

• Color primaries

• Color matrix

• Transfer function

Defaults are available for all three parts collectively and individually.

The process for decoding the colour specification parameters shall be follows:

colour spec(video params) : Ref

custom colour spec flag = read bool()

if (custom colour spec flag == True):

index = read uint()

preset colour specs(video params, index)

if (index == 0):

colour primaries(video params) 10.3.9.1

colour matrix(video params) 10.3.9.2

transfer function(video params) 10.3.9.3

The decoded value of index shall fall in the range 0 to 4.

10.3 Source parameters 38

preset colour spec(index) shall set the colour primaries, matrix and transfer function elements of video params

as specified in Table 10.6. If the value of index is 0, these values may be overridden as defined in the succeeding

sections.

index Description Primaries Matrix Transfer function

0 Custom HDTV HDTV TV gamma

1 SDTV 525 SDTV 525 SDTV TV gamma

2 SDTV 625 SDTV 625 SDTV TV gamma

3 HDTV HDTV HDTV TV gamma

4 D-Cinema HDTV HDTV DCinema gamma

Table 10.6: Color specification presets

10.3.9.1 Color primaries

The colour primaries decoding process shall be defined as follows:

colour primaries(video params) : Ref

custom colour primaries flag = read bool()

if (custom colour primaries flag == True):

index = read uint()

preset colour primaries(video params, index)

The decoded value of index shall fall in the range 0 to 3.

preset colour primaries(video params, index) shall set the colour primaries element of video params as

specified in Table 10.7.

index Description Specification Comment

0 HDTV ITU-R BT.709 Also Computer, Web, sRGB

1 SDTV 525 SMPTE 170M 525 primaries

2 SDTV 625 EBU Tech 3213-E 625 primaries

3 D-Cinema SMPTE 428.1 CIE XYZ

Table 10.7: Color primaries presets

10.3.9.2 Color matrix

The colour matrix decoding process shall be defined as follows:

colour matrix() : Ref

colour matrix flag = read bool()

if (colour matrix flag == True):

index = read uint()

preset colour matrices(index)

The decoded value of index shall fall in the range 0 to 2.

The preset colour matrices(video params, index) process shall set the colour matrix element in video params

as specified in Table 10.8.

index Description Specification Color matrix Comment

0 HDTV ITU-R BT.709 KR = 0.2126, KB = 0.0722 Also computer and web

1 SDTV ITU-R BT.601 KR = 0.299, KB = 0.114

2 Reversible ITU-T H.264 YCgCo

Table 10.8: Color matrix presets

10.4 Picture coding mode 39

10.3.9.3 Transfer function

The transfer function decoding process shall be defined as follows:

transfer function(video params) : Ref

custom transfer function flag = read bool()

if (custom transfer function flag == True):

index = read uint()

preset transfer function(video params, index)

index shall fall in the range 0 to 3. The preset transfer function(video params, index) process shall set

the transfer function element of video params as specified in Table 10.9.

index Description Specification

0 TV gamm ITU-R BT.1361

1 Extended Gamut ITU-R BT.1361 1998 Annex 1

2 Linear Linear

3 DCI Gamma SMPTE 428.1

Table 10.9: Transfer function presets

10.4 Picture coding mode

The picture coding mode value in the sequence header shall determine whether source video is coded as frames

or fields.

If the picture coding mode value is 1 then pictures shall correspond to fields. If it is 0 then pictures shall

correspond to frames. Other picture coding mode values shall be reserved for future extensions.

If video is coded as fields then the earliest field in each frame shall have an even picture number (Section

11.1.1). That is the LSB of the picture number, expressed as a binary number, indicates field parity.

With field coding each frame shall be split into two fields as indicated by the scan format (Section 10.3.4).

An effect of field coding shall be to halve the vertical dimensions of coded pictures. Hence, once the picture

coding mode is known, the picture dimensions, which shall be stored as part of the global state variable, shall

be set (Section 10.5.1).

Note: It is possible to code progressive video as fields. In this case, the assignment of frame lines to fields

will be determined by the value of the top field first parameter in the base video format (annex C). Note that,

according to section 10.3.4, this base format default cannot be overridden for progressive video, as to do so

would be artificial.

Sometimes progressive source video is conveyed as if it were interlaced (for example using interlaced SDI

modes), and could be signaled as such. This is known as progressive segmented frames (PSF). A Dirac encoder

could detect PSF, and signal video as progressive, yet still code the video as fields in order to introduce no

additional buffering delay in the signal chain. Or it could take the signaled video format at face value.

10.5 Initializing coding parameters

The set coding parameters() process shall initialize the dimensions of the coded picture (frame or field), and

the video depth (the maximum number of bits in a decoded video sample), which are needed to decode pictures.

Picture dimensions and video depth shall remain constant throughout a Dirac sequence.

Initialization of the coding parameters shall be as defined in the table below:

40

set coding parameters(video params, picture coding mode) : Ref

picture dimensions(video params, picture coding mode) 10.5.1

video depth(video params) 10.5.2

10.5.1 Picture dimensions

The picture dimensions process, which determines the size of coded pictures, shall be defined as follows:

picture dimensions(video params, picture coding mode) : Ref

state[LUMA WIDTH] = video params[FRAME WIDTH]

state[LUMA HEIGHT] = video params[FRAME HEIGHT]

state[CHROMA WIDTH] = state[LUMA WIDTH]

state[CHROMA HEIGHT] = state[LUMA HEIGHT]

chroma format index = video params[CHROMA FORMAT INDEX]]

if (chroma format index == 1):

state[CHROMA WIDTH]// = 2

else if (chroma format index == 2):

state[CHROMA WIDTH]// = 2

state[CHROMA HEIGHT]// = 2

if (picture coding mode == 1):

state[LUMA HEIGHT]// = 2

state[CHROMA HEIGHT]// = 2

The parameter video params[FRAME HEIGHT] refers to the height of a frame. The parameter state[LUMA HEIGHT]

refers to the height of a picture. A picture may be either a frame or a field depending on whether it is being

coded in an interlaced or progressive mode.

Frame height shall be an integer multiple of picture chroma height.

For convenience, the following utility functions shall be defined:

chroma h ratio() : Ref

return state[LUMA WIDTH]//state[CHROMA WIDTH]

chroma v ratio() : Ref

return state[LUMA HEIGHT]//state[CHROMA HEIGHT]

10.5.2 Video depth

The video depth() process, which determines the maximum number of bits required to represent a sample of

the decoded video, shall be defined as follows:

video depth(video params) : Ref

state[LUMA DEPTH] = intlog2(video params[LUMA EXCURSION] + 1)

state[CHROMA DEPTH] = intlog2(video params[CHROMA EXCURSION] + 1)

Note that for YCoCg format the luma and chroma depths are different.

11 Picture syntax

This section specifies the structure of Dirac picture data units.

11.1 Picture parsing 41

11.1 Picture parsing

This section specifies the operation of the picture parse() process. The process for decoding and outputting

pictures is specified in Section 15.

Picture data may be successfully parsed after parsing a sequence header within the same Dirac sequence. The

picture parsing process shall be defined as follows:

picture parse() : Ref

byte align()

picture header() 11.1.1

if (is inter()): 9.6.1

byte align()

picture prediction() 11.2

byte align()

wavelet transform() 11.3

11.1.1 Picture header

The picture header shall immediately follow a parse info header with a picture parse code (section 9.6). The

picture header parsing process shall be defined as follows:

picture header() : Ref

state[PICTURE NUM] = read byte lit(4)

if (is inter()): 9.6.1

state[REF1 PICTURE NUM] = (state[PICTURE NUM] + read sint())%232

if (num refs() == 2): 9.6.1

state[REF2 PICTURE NUM] = (state[PICTURE NUM] + read sint())%232

if (is ref()): 9.6.1

state[RETD PIC NUM] = (state[PICTURE NUM] + read sint())%232

Picture numbers shall be unique within a sequence and the set of all picture numbers within a sequence shall

form a contiguous block of numbers.

Reference picture numbers shall encoded differentially with respect to the picture number.

The pictures corresponding to the reference picture numbers of a given picture shall occur before the given

picture in the sequence.

The retired picture shall be a picture which shall be removed from the reference picture buffer before the

current picture is decoded (Section 15.1). The rules for the use of the reference picture buffer shall be as

defined in Section 15.4.

11.2 Picture prediction data

This section defines the picture prediction process that shall be used for decoding picture prediction parameters

and motion vector fields for motion compensation.

The picture prediction process shall be defined as follows:

picture prediction() : Ref

picture prediction parameters() 11.2.1

byte align()

block motion data() 12

The decoding and generation of block motion vector fields shall be as defined in Section 12.

11.2 Picture prediction data 42

11.2.1 Picture prediction parameters

Picture prediction parameters consist of metadata required for successful parsing of the motion data and for

performing motion compensation (Section 15.8).

The picture prediction parameters shall be defined as follows:

picture prediction parameters() : Ref

block parameters() 11.2.2

motion vector precision() 11.2.5

global motion() 11.2.6

picture prediction mode() 11.2.7

reference picture weights() 11.2.8

11.2.2 Block parameters

This section specifies the operation of the process for setting motion compensation block parameters, which

shall consist of the state variables state[LUMA XBLEN], state[LUMA YBLEN], state[LUMA XBSEP],

and state[LUMA YBSEP] defining luma blocks, and state[CHROMA XBLEN], state[CHROMA YBLEN],

state[CHROMA XBSEP], and state[CHROMA YBSEP] defining chroma blocks.

block parameters() : Ref

index = read uint()

if (index == 0):

state[LUMA XBLEN] = read uint()

state[LUMA YBLEN] = read uint()

state[LUMA XBSEP] = read uint()

state[LUMA YBSEP] = read uint()

else:

preset block params(index)

chroma block params() 11.2.3

motion data dimensions() 11.2.4

index shall lie in the range 0 to 4.

The preset block params(index) shall set the block parameters as specified in Table 11.1.

Chroma block parameter values shall be determined from luma values as defined in Section 11.2.3).

The dimensions of motion data arrays (numbers of blocks and superblocks) shall be as defined in Section 11.2.4.

index state[LUMA XBLEN] state[LUMA YBLEN] state[LUMA XBSEP] state[LUMA YBSEP]

1 8 8 4 4

2 12 12 8 8

3 16 16 12 12

4 24 24 16 16

Table 11.1: Luma block parameter presets

Block parameters shall satisfy the following constraints:

1. state[LUMA XBLEN], state[LUMA YBLEN], state[LUMA XBSEP], and state[LUMA YBSEP] shall

all be positive multiples of 4

2. state[LUMA XBLEN] ≥ state[LUMA XBSEP] and state[LUMA YBLEN] ≥ state[LUMA YBSEP]

3. state[LUMA XBLEN] ≤ 2∗state[LUMA XBSEP] and state[LUMA YBLEN] ≤ 2∗state[LUMA YBSEP]

11.2 Picture prediction data 43

Note: Note that these requirements do not preclude length from equalling separation, i.e. motion compen-

sation blocks that are not overlapped.

11.2.3 Setting chroma block parameters

This section defines how chroma block parameters shall be derived from luma block dimensions.

Chroma block parameters shall be equal to the corresponding luma block parameters scaled according to the

chroma vertical and horizontal subsampling ratios. In this way chroma blocks and luma blocks are co-located

in the video picture.

chroma block params() : Ref

state[CHROMA XBLEN] = state[LUMA XBLEN]//chroma h ratio() 10.5.1

state[CHROMA YBLEN] = state[LUMA YBLEN]//chroma v ratio() 10.5.1

state[CHROMA XBSEP] = state[LUMA XBSEP]//chroma h ratio() 10.5.1

state[CHROMA YBSEP] = state[LUMA YBSEP]//chroma v ratio() 10.5.1

11.2.4 Numbers of blocks and superblocks

The number of blocks and superblocks horizontally and vertically shall be set as follows:

motion data dimensions() : Ref

state[SUPERBLOCKS X] = state[LUMA WIDTH] + 4 ∗ state[LUMA XBSEP]− 1

state[SUPERBLOCKS X]// = 4 ∗ state[LUMA XBSEP]

state[SUPERBLOCKS Y] = state[LUMA HEIGHT] + 4 ∗ state[LUMA YBSEP]− 1

state[SUPERBLOCKS Y]// = 4 ∗ state[LUMA YBSEP]

state[BLOCKS X] = 4 ∗ state[SUPERBLOCKS X]

state[BLOCKS Y] = 4 ∗ state[SUPERBLOCKS Y]

These values shall determine the size of motion data arrays as per Section 12.2.1.

Note: The number of superblocks is set so that the dimensions of the picture are entirely covered by

superblocks at a separation of 4 ∗ state[LUMA XBSEP] horizontally and 4 ∗ state[LUMA YBSEP] vertically.

11.2.5 Motion vector precision

The motion vector precision process shall be as follows:

motion vector precision() : Ref

state[MV PRECISION] = read uint()

state[MV PRECISION] shall lie in the range 0 (pixel-accurate) to 3 (1/8th-pixel accurate).

11.2.6 Global motion

Global motion parameters shall be encoded if the state[USING GLOBAL] flag is set to True. Up to two sets

shall be encoded, depending upon the number of references.

The global motion process shall be as follows:

11.2 Picture prediction data 44

global motion() : Ref

state[USING GLOBAL] = read bool()

if (state[USING GLOBAL] == True):

global motion parameters(state[GLOBAL PARAMS][1])

if (num refs() == 2):

global motion parameters(state[GLOBAL PARAMS][2])

Each of the global motion parameters shall consist of three elements:

• an integer pan/tilt vector state[GLOBAL PARAMS][n][PAN TILT]

• an integer 2x2 matrix element state[GLOBAL PARAMS][n][ZRS] capturing zoom, rotation and shear,

together with a scaling exponent state[GLOBAL PARAMS][n][ZRS EXP]

• an integer perspective vector state[GLOBAL PARAMS][n][pespective] capturing the effect of non-orthogonal

projection onto the image plane, together with a scaling exponent state[GLOBAL PARAMS][n][pespective exp]

Their interpretation and the process for generating a global motion vector field shall be as defined in Section

15.8.8.

The global motion parameters process shall be defined as follows:

global motion parameters(gparams) : Ref

pan tilt(gparams)

zoom rotate shear(gparams)

perspective(gparams)

The pan tilt() process shall extracts horizontal and vertical translation elements and shall be defined as follows:

pan tilt(gparams) : Ref

gparams[PAN TILT] = 0

nonzero pan tilt flag = read bool()

if (nonzero pan tilt flag == True):

gparams[PAN TILT][0] = read sint()

gparams[PAN TILT][1] = read sint()

The zoom rotate shear() process shall extract a linear matrix element and shall be as defined as follows:

zoom rotation shear(gparams) : Ref

nontrivial zrs flag = read bool()

if (nontrivial zrs flag == True):

gparams[ZRS EXP] = read uint()

gparams[ZRS][0][0] = read sint()

gparams[ZRS][0][1] = read sint()

gparams[ZRS][1][0] = read sint()

gparams[ZRS][1][1] = read sint()

else:

gparams[ZRS EXP] = 0

gparams[ZRS][0][0] = 1

gparams[ZRS][0][1] = 0

gparams[ZRS][1][0] = 0

gparams[ZRS][1][1] = 1

The perspective() process shall extract horizontal and vertical perspective elements and shall be defined as

follows:

11.3 Wavelet transform data 45

perspective(gparams) : Ref

nonzero perspective flag = read bool()

if (nonzero perspective flag == True):

gparams[PERSP EXP] = read uint()

gparams[PERSPECTIVE][0] = read sint()

gparams[PERSPECTIVE][1] = read sint()

else:

gparams[PERSP EXP] = 0

gparams[PERSPECTIVE] = 0

11.2.7 Picture prediction mode

The picture prediction mode encodes alternative methods of motion compensation and is present to support

future extensions of this specification.

It shall be defined as follows:

picture prediction mode() : Ref

state[PICTURE PRED MODE] = read uint()

In this specification, state[PICTURE PRED MODE] shall be 0.

11.2.8 Reference picture weight values

Reference picture weight values shall be determined as follows:

reference picture weights() : Ref

state[REFS WT PRECISION] = 1

state[REF1 WT] = 1

state[REF2 WT] = 1

custom weights flag = read bool()

if (custom weights flag == True):

state[REFS WT PRECISION] = read uint()

state[REF1 WT] = read sint()

if (num refs() == 2):

state[REF2 WT] = read sint()

Note: For bi-directional prediction modes, reference 1 data will be weighted by

state[REF1 WT]

2state[REFS WT PRECISION]

and reference 2 data by

state[REF2 WT]

2state[REFS WT PRECISION]

(see Section 15.8.5).

The picture weights are signed integers and may be negative. In addition, they may not sum to

2state[REFS WT PRECISION], to accomodate fade prediction.

11.3 Wavelet transform data

The wavelet transform syntax shall provide metadata determining the wavelet transform parameters (includ-

ing filter type, transform depth, and codeblock or slice structures) together with the transformed wavelet

coefficients.

11.3 Wavelet transform data 46

The wavelet transform process for parsing transform metadata and coefficients shall be defined as follows:

wavelet transform() : Ref

state[ZERO RESIDUAL] = False

if (is inter()): 9.6.1

state[ZERO RESIDUAL] = read bool()

if (state[ZERO RESIDUAL] == False):

transform parameters() 11.3.1

byte align()

transform data() 13

Parsing (unpacking) the wavelet transform data shall be as defined in Section 13.

Decoding the transformed wavelet transform data to produce decoded pictures shall be as defined in Section

15.

If state[ZERO RESIDUAL] = True then all component pixels shall be set to zero (Section 15.1).

11.3.1 Transform parameters

The wavelet transform parameters shall define the metadata required to configure the inverse wavelet transform

for both the low delay and core syntax.

The transform parameters() process shall be defined as follows:

transform parameters() : Ref

state[WAVELET INDEX] = read uint() 11.3.1.1

state[DWT DEPTH] = read uint() 11.3.2

if (is low delay() == False):

codeblock parameters() 11.3.3

else:

slice parameters() 11.3.4

quant matrix() 11.3.5

11.3.1.1 Wavelet filters

The wavelet filter parameter shall define the wavelet filter used by the Dirac stream. T The value of

state[WAVELET INDEX] shall lie in the range 0 to 6 with values as defined in Table 11.2:

state[WAVELET INDEX] Filter

0 Deslauriers-Dubuc (9,7)

1 LeGall (5,3)

2 Deslauriers-Dubuc (13,7)

3 Haar with no shift

4 Haar with single shift per level

5 Fidelity filter

6 Daubechies (9,7) integer approximation

Table 11.2: Wavelet filter presets

The implementation of the chosen wavelet filter shall be as defined in Section 15.6.3.

Note: For consistency, the filter nomenclature (m, n) refers to the length of the analysis low-pass and high-

pass filters in the conventional prefiltering (i.e. before subsampling) model of wavelet filtering. They do not

11.3 Wavelet transform data 47

reflect the length of lifting filters, which operate in the subsampled domain: see Section 15.6.3. Deslauriers-

Dubuc filters are normally referred to in terms of the number of vanishing moments of their synthesis filters,

so the (9,7) and (13,7) filters may be referred to in the literature as (2,2) and (4,2) filters respectively.

11.3.2 Transform depth

The transform depth parameter shall determine the number of stages in the wavelet transform.that the vertical

and horizontal wavelet filters are applied.

Note: The transform depth determines the number of subbands and the the dimensions of the subband data

array (Section 13.1.1).

11.3.3 Codeblock parameters (core syntax only)

In the core syntax only, each subband may be partitioned into a number of code blocks.

The process for extracting codeblock parameters shall be as follows:

codeblock parameters() : Ref

state[CODEBLOCK MODE] = 0

for level = 0 to state[DWT DEPTH]:

state[CODEBLOCKS X][level] = 1

state[CODEBLOCKS Y][level] = 1

spatial partition flag = read bool()

if (spatial partition flag == True):

for level = 0 to state[DWT DEPTH]:

state[CODEBLOCKS X][level] = read uint()

state[CODEBLOCKS Y][level] = read uint()

state[CODEBLOCK MODE] = read uint()

The presence of codeblocks in subbands shall be indicated by setting spatial partition flag to True; otherwise

it shall be False.

The number of codeblocks to be used for subbands at each transform depth level shall be encoded in state[CODEBLOCKS Y][level]

and state[CODEBLOCKS X][level] for vertical and horizontal axes respectively.

The codeblock mode is encoded in state[CODEBLOCK MODE], which shall have value 0 or 1, with meanings

as defined in Table 11.3.

state[CODEBLOCK MODE] Description

0 Single quantiser per subband, used for all codeblocks

1 Multiple Quantiser per subband, one for each codeblock

Table 11.3: Codeblock modes

The operation of subband codeblock decoding shall be as defined in Section 13.4.3.

11.3.4 Slice coding parameters (low delay syntax only)

This slice parameters process shall be defined as follows:

slice parameters() : Ref

state[SLICES X] = read uint()

state[SLICES Y] = read uint()

state[SLICE BYTES NUMER] = read uint()

state[SLICE BYTES DENOM] = read uint()

11.3 Wavelet transform data 48

11.3.5 Quantisation matrices (low-delay syntax)

The quantization matrix shall be used to modify the slice quantizer for each subband in a slice. The quantization

matrix shall be encoded in the state[QMATRIX] decoder variable.

The quant matrix() process shall be defined as follows:

quant matrix() : Ref

custom quant matrix = read bool()

if (custom quant matrix == True):

state[QMATRIX][0][LL] = read uint()

for level = 1 to state[DWT DEPTH]:

state[QMATRIX][level][HL] = read uint()

state[QMATRIX][level][LH] = read uint()

state[QMATRIX][level][HH] = read uint()

else:

set quant matrix()

If state[DWT DEPTH] > 4 then custom quant matrix shall be True.

If state[DWT DEPTH] ≤ 4, then custom quantization matrices may still be transmitted, for example to apply

a different degree of perceptual weighting (see Annex E.2).

The function set quant matrix() shall set the quantization matrix based on the wavelet ?lter as per Annex

E.1. These are unweighted matrices, whose values merely compensate for the differential power gain of the

different subband ?lters. For perceptual weighting a custom quantisation matrix must be used.

49

12 Block motion data syntax

This section defines the operation of the block motion data() process for extracting block motion data from

the Dirac stream.

Block motion data is aggregated into superblocks, consisting of a 4x4 array of blocks. The number of superblocks

horizontally and vertically shall be determined so that there are sufficient superblocks to cover the picture area.

Superblocks may overlap the right and bottom edge of the picture.

Note:

1. Since superblocks may overlap the right and bottom edge of the picture, blocks in such superblocks may

also overlap the edges or even fall outside the picture area altogether. Motion data for blocks which fall

outside the picture area is still decoded, but will not be used for motion compensation (Section 15.8).

2. Unlike macroblocks in MPEG standards, a superblock does not encapsulate all data within a given

area of the picture. It is merely an aggregation device for motion data, and for this reason a different

nomenclature has been adopted.

12.1 Prediction modes and splitting modes

12.1.1 Prediction modes

Two types of prediction mode shall be defined: a reference prediction mode, indicating which references are to

be used for motion compensation, and a global motion mode flag, indicating how prediction is to be performed

(using global motion or block motion for a given block).

Four reference prediction modes shall be defined and shall be denoted by integer constant values:

1. INTRAshall denote value 0, and shall indicate that DC values for a block shall be decoded and that no

motion vectors shall be decoded.

2. REF1ONLYshall denote value 1 and shall indicate that a motion vector for the first reference picture

shall be decoded, but no motion vector for the second reference picture shall be decoded.

3. REF2ONLYshall denote value 2 and shall indicate that a motion vector for the second reference picture

shall be decoded, but no motion vector for the first reference picture shall be decoded.

4. REF1AND2shall denote value 3 and shall indicate that motion vectors for both the first and second

reference picture shall be decoded.

In addition, where global motion is used for a picture (i.e state[USING GLOBAL] is set), a global motion

mode flag shall be encoded for each block. If True, global motion compensation shall be used for this block,

and no block motion vectors or DC values shall be encoded. If False, block motion compensation shall be

employed and one or more motion vectors shall be encoded.

12.1.2 Splitting modes

Block motion data shall be aggregated into superblocks, consisting of a 4x4 array of blocks, for each block

motion data element.

Three superblock splitting levels shall be defined, numbered 0, 1, and 2.

When level 0 splitting is used, if a block motion data element is present for that superblock, only one value

shall be coded. This value shall be applied to all blocks within the superblock.

12.2 Structure of block motion data arrays 50

When level 1 splitting is used, at most 4 values shall be coded for each block motion data element. Where

present, each of these values shall be applied to the blocks in within the corresponding 2x2 sub-array of blocks

within the superblock.

When level 2 splitting is used, if a block motion data element is present for that superblock, only four values

shall be coded. Each of these values shall be applied to all the four blocks in one of the four 2x2 sub-arrays of

blocks within the superblock.

12.2 Structure of block motion data arrays

For the purposes of this specification, block motion data shall be stored in the two dimensional array state[BLOCK DATA].

Superblock splitting modes shall be stored in the two dimensional array state[SB SPLIT].

For each block with coordinates (i, j), a block motion data element state[BLOCK DATA][j][i] shall be defined.

It is a map (Section 6.3) and shall consist of up to five elements:

1. A motion vector for reference 1, state[BLOCK DATA][j][i][VECTOR][1], consisting of integral horizontal

and vertical elements state[BLOCK DATA][j][i][VECTOR][1][0] and state[BLOCK DATA][j][i][VECTOR][1][1].

2. A motion vector for reference 2, state[BLOCK DATA][j][i][VECTOR][2], consisting of integral horizontal

and vertical elements state[BLOCK DATA][j][i][VECTOR][2][0] and state[BLOCK DATA][j][i][VECTOR][2][1].

3. A set of integral DC values for each component, state[BLOCK DATA][j][i][DC][Y], state[BLOCK DATA][j][i][DC][C1],

and state[BLOCK DATA][j][i][DC][C2].

4. A reference prediction mode, state[BLOCK DATA][j][i][RMODE], taking values INTRA, REF1ONLY,

REF2ONLY, or REF1AND2and indicating which references (if any) are to be used for predicting block

(i, j)

5. A global motion mode flag, state[BLOCK DATA][j][i][GMODE]

12.2.1 Block motion data initialisation

This section specifies the operation of the initialise motion data() process. It shall set the dimensions of

the block motion parameter arrays according to the numbers of blocks and superblocks defined in Section

motiondatadimensions.

The array state[BLOCK DATA] shall be set to have horizontal dimension state[BLOCKS X] and vertical

dimension state[BLOCKS Y].

The array state[SB SPLIT] shall be set to have horizontal dimension state[SUPERBLOCKS X] and vertical

dimension state[SUPERBLOCKS Y].

12.3 Motion data decoding process

This section defines the block motion data() process for extracting block motion data elements.

This process depends upon the picture prediction parameters (Section 11.2.1).

Block motion data elements shall be coded differentially with respect to a spatial prediction. The spatial

prediction processes for the block motion elements are defined in Section 12.3.6

The decoding process for the block motion data shall consist of:

1. decoding the superblock split modes,

2. decoding the prediction modes in each superblock according to the split mode, and

3. decoding the motion vectors and DC values according to the split mode and the decoded mode for each

block.

12.3 Motion data decoding process 51

The motion vector elements are further decomposed into horizontal and vertical components which are encoded

as separate parts. The DC values are further decomposed into the the components which are encoded as

separate parts.

The coded data for each part (splitting mode, prediction mode, vector component, or DC component values)

shall consist of an entropy coded block preceded by a length code.

block motion parameters() : Ref

initialise motion data() 12.2.1

superblock split modes() 12.3.1

prediction modes() 12.3.3

vector elements(1, 0) 12.3.4

vector elements(1, 1) 12.3.4

if (num refs() == 2):

vector elements(2, 0) 12.3.4

vector elements(2, 1) 12.3.4

dc values(Y) 12.3.5

dc values(C1) 12.3.5

dc values(C2) 12.3.5

Note: The superblock splitting modes determine the number, and location, of prediction mode values to

be decoded – there must be one for each ‘prediction unit’ (block, 2x2 array or blocks, or 4x4 array or blocks)

within a superblock. Together, the split mode and the prediction mode determine the number and location

of all other motion data parts, which can each then be decoded in parallel. Indeed, by attempting to decode

the maximum possible number of prediction residue values for all motion data elements, the first two motion

data elements may also be decoded in parallel with the others. Once all residue values are decoded, excess

values can be discarded, the location of values determined and actual values reconstructed by prediction. This

approach may be particularly valuable in hardware. Decoding may proceed in this way, as the arithmetic

decoding engine allows bits to be read beyond the nominal end of an arithmetically-coded chunk by inserting

1s, hence allowing virtual values to be read.

12.3.1 Superblock splitting modes

This section defines the decoding of the superblock splitting mode values.

The superblock splitting mode shall determine the number of prediction modes coded for each superblock.

superblock split modes() process shall be defined as follows:

superblock split modes() : Ref

length = read uint()

state[BITS LEFT] = 8 ∗ length

byte align()

ctx labels = [SB F1, SB F2, SB DATA]

initialise arithmetic decoding(ctx labels) B.2.2

for ysb = 0 to state[SUPERBLOCKS Y]− 1:

for xsb = 0 to state[SUPERBLOCKS X]− 1:

sb split residual = read uinta(sb split contexts()) 12.3.7.1

state[SB SPLIT][ysb][xsb] = sb split residual

state[SB SPLIT][ysb][xsb]+ = split prediction(xsb, ysb) 12.3.6.2

state[SB SPLIT][ysb][xsb]% = 3

flush inputb() A.3.1

12.3 Motion data decoding process 52

12.3.2 Propagating data between blocks

The superblock splitting mode determines the maximum number of values to be decoded for each block motion

data element: 0, 4, or 16. If the splitting mode is 0 or 1 and a value is decoded it applies to all 16 blocks

or to one of the 4 2x2 sub-arrays of blocks within the superblock. So that prediction of values shall operate

correctly, once decoded a value shall be propagated to all blocks to which it applies.

The propagate data(xtl, ytl, k, idx) shall copy decoded block data from the top-left-most block (xtl, ytl) of an

array of k × k blocks, where k shall be 4 if the splitting mode is 0 and k shall be 2 if the splitting mode is 1.

It shall be defined as follows:

propagate data(xtl, ytl, k, label) : Ref

for y = ytl to ytl + k − 1:

for x = xtl to xtl + k − 1:

state[BLOCK DATA][y][x][label] = state[BLOCK DATA][ytl][xtl][label]

12.3.3 Block prediction modes

The prediction mode process shall decode global motion and reference prediction modes required for each

superblock according to the the superblock splitting mode.: 16 values shall be decoded for split mode 2, 4

values shall be decoded for split mode 1, and 1 value for split mode 0.

For split modes 0 and 1, decoded values shall placed in the top-left corner block of the array (4x4 or 2x2) of

blocks to which they apply, and then propagated to the other blocks.

The prediction modes() process shall be defined as follows:

prediction modes() : Ref

length = read uint()

state[BITS LEFT] = 8 ∗ length

byte align()

ctx labels = [PMODE REF1, PMODE REF2, GLOBAL BLOCK]

initialise arithmetic decoding(ctx labels) B.2.2

for ysb = 0 to state[SUPERBLOCKS Y]− 1:

for xsb = 0 to state[SUPERBLOCKS X]− 1:

block count = 2state[SB SPLIT][y][x]

step = 4//block count

for q = 0 to block count− 1:

for p = 0 to block count− 1:

block ref mode(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step) 12.3.3.1

propagate data(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step, step, RMODE) 12.3.2

block global mode(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step) 12.3.3.2

propagate data(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step, step, GMODE) 12.3.2

flush inputb() A.3.1

12.3.3.1 Block prediction mode The block ref mode() process shall be defined as follows:

12.3 Motion data decoding process 53

block ref mode(x, y) : Ref

state[BLOCK DATA][y][x][RMODE] = 0

if (read boola(PMODE REF1) == True):

state[BLOCK DATA][y][x][RMODE] = 1

if (num refs() == 2):

if (read boola(PMODE REF2) == True):

state[BLOCK DATA][y][x][RMODE]+ = 2

state[BLOCK DATA][y][x][RMODE]∧ = ref mode prediction(x, y) 12.3.6.3

12.3.3.2 Block global mode

The block global mode() process shall be defined as follows:

block global(x, y) : Ref

state[BLOCK DATA][y][x][GMODE] = False

if (state[USING GLOBAL] == True):

if (state[BLOCK DATA][y][x][RMODE]! = INTRA):

block global residue = read boola(GLOBAL BLOCK)

state[BLOCK DATA][y][x][GMODE] = block global residue

state[BLOCK DATA][y][x][GMODE]∧ = block global prediction(x, y) 12.3.6.4

12.3.4 Block motion vector elements

The vector element process shall decode the set of horizontal, or the set of vertical motion vector elements

associated with one of the reference pictures.

vector elements() process shall be defined as follows:

vector elements(ref, dirn) : Ref

length = read uint()

state[BITS LEFT] = 8 ∗ length

byte align()

ctx labels =
[VECTOR F1, VECTOR F2, VECTOR F3, VECTOR F4, VECTOR F5+,

VECTOR DATA, VECTOR SIGN]

initialise arithmetic decoding(ctx labels) B.2.2

for ysb = 0 to state[SUPERBLOCKS Y]− 1:

for xsb = 0 to state[SUPERBLOCKS X]− 1:

block count = 2state[SB SPLIT][y][x]

step = 4//block count

for q = 0 to block count− 1:

for p = 0 to block count− 1:

block vector(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step, ref, dirn)

propagate data(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step, step, VECTOR) 12.3.2

flush inputb() A.3.1

The block vector proces shall decode an individual motion vector element. It shall be defined as follows:

12.3 Motion data decoding process 54

block vector(x, y, ref, dirn) : Ref

if (state[BLOCK DATA][y][x][RMODE][ref] == True):

if (state[BLOCK DATA][y][x][GMODE] == False):

mv residual = read sinta(mv contexts()) 12.3.7.2

state[BLOCK DATA][y][x][VECTOR][ref][dirn] = mv residual

state[BLOCK DATA][y][x][VECTOR][ref][dirn]+ = mv prediction(x, y, ref, dirn)

12.3.5 DC values

The DV value process shall decode the DC values for a intra blocks for a given video component (Y, C1 or

C2). It shall be defined as follows:

dc values(c) : Ref

length = read uint()

state[BITS LEFT] = 8 ∗ length

byte align()

ctx labels = [DC F1, DC F2+, DC DATA, DC SIGN]

initialise arithmetic decoding(ctx labels) B.2.2

for ysb = 0 to state[SUPERBLOCKS Y]− 1:

for xsb = 0 to state[SUPERBLOCKS X]− 1:

block count = 2state[SB SPLIT][y][x]

step = 4//block count

for q = 0 to block count− 1:

for p = 0 to block count− 1:

block dc(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step, c)

propagate data(4 ∗ xsb + p ∗ step, 4 ∗ ysb + q ∗ step, step, DC) 12.3.2

flush inputb() A.3.1

The block DC process shall decode an individual component DC value. It shall be defined as follows:

block dc(x, y, c) : Ref

if (state[BLOCK DATA][y][x][RMODE] = INTRA):

dc residual = read sinta(dc contexts()) 12.3.7.3

state[BLOCK DATA][y][x][DC][c] = dc residual

state[BLOCK DATA][y][x][DC][c]+ = dc prediction(x, y, c) 12.3.6.6

12.3.6 Spatial prediction of motion data elements

12.3.6.1 Prediction apertures

A consistent convention for prediction apertures is used. The nominal prediction aperture for block motion

data is defined to be the relevant data to the left, top and top-left of the data element in question (Figure

12.1). For the superblock split mode of the superblock with index (i, j) this means the superblocks with indices

(i − 1, j), (i, j − 1) and (i − 1, j − 1). For the block motion data itself, the same applies where these indices

are block indices.

This is the nominal prediction aperture. Not all data elements in this prediction aperture may be available,

either because they would require negative indices, or because the data is not available - for example a block

to the left of a block with reference mode REF2ONLYmay have reference mode REF1ONLYand so can furnish

no contribution for a prediction to the Reference 2 motion vector.

When superblocks have split level 1 or 0, block data shall be propagated (Section 12.3.2) across 4 or 16 blocks

so as to furnish a prediction. The effect is illustrated in Figure 12.2.

12.3 Motion data decoding process 55

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

@
@

@
@

@@R ?

-

Figure 12.1: Basic prediction aperture

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

@
@

@@RHHj ?

?
@@RHHj -

@
@@R ?

Figure 12.2: Effect of splitting modes on spatial prediction

12.3.6.2 Superblock split prediction

split prediction returns the mean of the the neighbouring split values:

split prediction(x, y) : Ref

if (x == 0 and y == 0):

return 0

else if (y == 0):

return state[SB SPLIT][0][x− 1]

else if (x == 0):

return state[SB SPLIT][y − 1][0]

else:

return mean(state[SB SPLIT][y − 1][x− 1],

state[SB SPLIT][y][x− 1],

state[SB SPLIT][y − 1][x])

12.3.6.3 Block mode prediction

The ref mode prediction() function shall return a value that represents a majority verdict for the presence of

each of the references individually. It shall be defined as follows:

12.3 Motion data decoding process 56

ref mode prediction(x, y) : Ref

if (x == 0 and y == 0):

return INTRA

else if (y == 0):

return state[BLOCK DATA][0][x− 1][RMODE]

else if (x == 0):

return state[BLOCK DATA][y − 1][0][RMODE]

else:

num ref1 nbrs = state[BLOCK DATA][y − 1][x]&1

num ref1 nbrs+ = state[BLOCK DATA][y − 1][x− 1]&1

num ref1 nbrs+ = state[BLOCK DATA][y][x− 1]&1

pred = num ref1 nbrs//2

num ref2 nbrs = (state[BLOCK DATA][y − 1][x] À 1)&1

num ref2 nbrs+ = (state[BLOCK DATA][y − 1][x− 1] À 1)&1

num ref2 nbrs+ = (state[BLOCK DATA][y][x− 1] À 1)&1

pred∧ = (num ref2 nbrs//2) ¿ 1

return pred

12.3.6.4 Block global flag prediction

The block global prediction() function shall return a value that represents a majority verdict of the neighbour-

ing blocks. It shall be defined as follows:

block global prediction(x, y) : Ref

if (x == 0 and y == 0):

return False

else if (y == 0):

return state[BLOCK DATA][0][x− 1][GMODE]

else if (x == 0):

return state[BLOCK DATA][y − 1][0][GMODE]

else:

return majority(state[BLOCK DATA][y − 1][x− 1][GMODE],

state[BLOCK DATA][y − 1][x][GMODE],

state[BLOCK DATA][y][x− 1][GMODE])

12.3.6.5 Motion vector prediction

Motion vectors shall be predicted using the median of available block vectors in the aperture. A vector shall

be available for prediction if:

1. its block falls within the picture area,

2. its prediction mode allows it to be defined, and

3. it is not a global motion block.

The mv prediction(x, y, ref, dirn) shall return motion values according to the following rules:

Case 1. If x == 0 and y == 0, the value 0 shall be returned.

Case 2. If x > 0 and y == 0 then:

1. If state[BLOCK DATA][0][x−1][GMODE] == False and state[BLOCK DATA][0][x−1][RMODE][ref] ==

True then vector element state[BLOCK DATA][0][x− 1][ref][dirn] shall be returned,

2. otherwise, 0 shall be returned

12.3 Motion data decoding process 57

Case 3. If x == 0 and y > 0 then:

1. If state[BLOCK DATA][y−1][0][GMODE] == False and state[BLOCK DATA][y−1][0][RMODE][ref] ==

True then vector element state[BLOCK DATA][y − 1][0][ref][dirn] shall be returned,

2. otherwise, 0 shall be returned

Case 4. If both x > 0 and y > 0 then all 3 blocks in the prediction aperture may potentially contribute to the

prediction. Define the set values = {}. The prediction shall be the median of the available vector elements,

as defined in the following pseudocode:

. . .

if (x > 0 and y > 0):

if (state[BLOCK DATA][y][x− 1][GMODE] == False):

if (state[BLOCK DATA][y][x− 1][RMODE][ref] == True):

values = values ∪ {state[BLOCK DATA][y][x− 1][ref][dirn]}
if (state[BLOCK DATA][y − 1][x][GMODE] == False):

if (state[BLOCK DATA][y − 1][x][RMODE][ref] == True):

values = values ∪ {state[BLOCK DATA][y − 1][x][ref][dirn]}
if (state[BLOCK DATA][y − 1][x− 1][GMODE] == False):

if (state[BLOCK DATA][y − 1][x− 1][RMODE][ref] == True):

values = values ∪ {state[BLOCK DATA][y − 1][x− 1][ref][dirn]}
return median(values) 6.4.3

(Note that the median of an empty set is zero.)

12.3.6.6 DC value prediction

DC values shall be predicted using the unbiased mean of available values in the prediction aperture.

The process dc prediction(x, y, c) shall return values according to the following rules:

Case 1. If x == 0 and y == 0, 0 shall be returned.

Case 2. If x > 0 and y == 0 then:

1. If state[BLOCK DATA][0][x− 1][RMODE] == INTRA, state[BLOCK DATA][0][x− 1][DC][c] shall be

returned,

2. otherwise, 0 shall be returned.

Case 3. If x == 0 and y > 0 then:

1. If state[BLOCK DATA][y − 1][0][RMODE] == INTRA, state[BLOCK DATA][y − 1][0][DC][c] shall be

returned,

2. otherwise, 0 shall be returned.

Case 4. If both x > 0 and y > 0 then all 3 blocks in the prediction aperture may potentially contribute to

the prediction. Define a set values = {}. The prediction shall be the unbiased mean of available values, as

defined in the following pseudocode:

12.3 Motion data decoding process 58

. . .

if (x > 0 and y > 0):

if (state[BLOCK DATA][y][x− 1][RMODE] == INTRA):

values = values ∪ {state[BLOCK DATA][y][x− 1][DC][c]}
if (state[BLOCK DATA][y − 1][x][RMODE] == INTRA):

values = valuesx ∪ {state[BLOCK DATA][y − 1][x][ref][DC][c]}
if (state[BLOCK DATA][y − 1][x− 1][RMODE] == INTRA):

values = values ∪ {state[BLOCK DATA][y − 1][x− 1][ref][DC][c]}
if (values! = {}):

return pred = mean(values)

else:

return 0

12.3.7 Block motion parameter contexts

12.3.7.1 Superblock splitting mode

The sb split contexts() function shall return a context label map c with the following values:

• c[FOLLOW] = [SB F1, SB F2]

• c[DATA] = SB DATA

12.3.7.2 Motion vectors

The mv contexts() function shall return a context label map c with the following values:

• c[FOLLOW] = [VECTOR F1, VECTOR F2, VECTOR F3, VECTOR F4, VECTOR F5+]

• c[DATA] = VECTOR DATA

• c[SIGN] = VECTOR SIGN

12.3.7.3 DC values The dc contexts() function shall return a context label map c with the following

values:

• c[FOLLOW] = [DC F1, DC F2+]

• c[DATA] = DC DATA

• c[SIGN] = DC SIGN

59

13 Transform data syntax

This section defines the process for unpacking (parsing, entropy decoding and inverse quantizing) wavelet

transform coefficient data from the Dirac stream. Wavelet coefficients shall be signed integer values and shall

be extracted using the integer VLC and (optionally) arithmetic decoding functions defined in annex A. The

use of arithmetic coding within a picture shall be as signaled by the parse codes defined in Section 9.6. The

result of this process shall be a set of fully populated wavelet subband data arrays, as defined in Section 13.1.

Wavelet coefficients shall be packed in the bitstream in one of two possible formats:

1. In the core syntax, coefficients shall be grouped within individual subbands, representing a range of

spatial frequencies, from the lowest to the highest. A full set of subbands shall be encoded for each video

component in turn.

2. In the low delay syntax, coefficients shall be grouped into slices that represent coefficients pertaining

to an area of the picture. Each slice shall contain data for all video components and spatial frequency

bands. Unpacking a slice allows an area of picture to be extracted without extracting (or even receiving)

the remaining picture data.

The overall process for unpacking transform data shall be as follows:

transform data() : Ref

if (is low delay() == False):

state[Y TRANSFORM] = core transform data(Y) 13.4

state[C1 TRANSFORM] = core transform data(C1) 13.4

state[C2 TRANSFORM] = core transform data(C2) 13.4

else:

low delay transform data() 13.5.1

Unpacked wavelet coefficient data shall be stored in the state variables state[Y TRANSFORM], COneTransform

and CTwoTransform for the IDWT process (Section 15.6).

13.1 Subband data structures

Subband data shall be ordered by level (0, 1, 2, 3 etc) and orientation (LL, HL, LH and HH). In level 0, only

the LL orientation shall be available (known also as the DC band); in the other levels only the HL, LH and

HH orientations shall be available.

The 0-LL subband shall be presented first in each slice (low delay coding) or component (core syntax coding).

Within each subband depth level, the orientation order shall be x-HL, x-LH, x-HH (where x is the transform

depth level).

The subbands partition the spatial frequencies by orientation and level so that a four-level subband array is

as illustrated in Figure 13.1.

13.1.1 Wavelet data initialisation

This section defines the initialise wavelet data(comp) process, which returns a structure which will contain

the wavelet coefficients for the component (Y, C1 or C2) indicated by comp.

The coefficient data shall comprise the four dimensional array coeff data, where individual subbands shall be

two-dimensional arrays accessed by level level and orientation orient: e.g.

band = coeff data[level][orient]

Valid levels shall be integer values in the range 0 to state[DWT DEPTH] inclusive.

13.1 Subband data structures 60

Level 4
?

Level 3
?

2
?

1
?

4-HL

4-LH 4-HH

3-HL

3-LH 3-HH

2-HL

2-LH 2-HH

1-HL

1-LH 1-HH

0-LL

Figure 13.1: Subband decomposition of the spatial frequency domain showing subband numbering, for a 4-level

wavelet decomposition

Level 0 shall consists of a single subband with orientation LL.

All other levels shall consist of 3 subbands of orientation HL, LH and HH in that order within the Dirac stream.

The orientations correspond to either low- or high-pass filtering horizontally and vertically: so e.g. the LHband

consists of coefficients derived from horizontal low-pass filtering and vertical high-pass filtering.

Each subband array shall be initialised so that:

width(coeff data[level][orient]) = subband width(level, comp)

height(coeff data[level][orient]) = subband height(level, comp)

as specified in Section 13.1.2. These dimensions correspond to a wavelet transform being performed on a

copy of the component data which has been padded (if necessary) so that its dimensions are a multiple of

2state[DWT DEPTH].

Individual subband coefficients shall be signed integers accessed by vertical and horizontal coordinates within

the subband, e.g.:

c = coeff data[level][orient][y][x]

for coordinates (x, y) such that

0 ≤ x < subband width(level, comp)

0 ≤ y < subband height(level, comp)

13.2 Inverse quantisation 61

13.1.2 Subband dimensions

This section defines the values of the subband width(level, comp) and subband height(level, comp) functions,

giving the width and height of subbands at a given level for a given component, and hence the range of subband

vertical and horizontal indices.

If comp == Y , set

w = state[LUMA WIDTH]

h = state[LUMA HEIGHT]

Otherwise, set

w = state[CHROMA WIDTH]

h = state[CHROMA HEIGHT]

The padded dimensions of the component shall be defined by:

scale = 2state[DWT DEPTH]

pw = scale ∗ ((w + scale− 1)//scale)

ph = scale ∗ ((h + scale− 1)//scale)

If level == 0,

subband width(level) = pw//2state[DWT DEPTH]

subband height(level) = ph//2state[DWT DEPTH]

If level > 0

subband width(level) = pw//2state[DWT DEPTH]−level+1

subband height(level) = ph//2state[DWT DEPTH]−level+1

Note: In encoding, these padded dimensions may be achieved by padding the component data up to

the padded dimensions and applying the forward Discrete Wavelet Transform (the inverse of the operations

specified in Section 15.6). Any values may be used for the padded data, although the choice will affect wavelet

coefficients at the right and bottom edges of the subbands. Good results, in compression terms, may be

obtained by using edge extension for intra pictures and zero extension for inter pictures. A poor choice of

padding may cause visible artefacts near the bottom and right edges at high levels of compression.

13.2 Inverse quantisation

This section defines the operation of inverse quantisation, which scales the dynamic range of unpacked wavelet

coefficients according to a pre-determined factor. The inverse quantisation operation is common to both the

low-delay and core syntax.

The inverse quant() function shall be defined as follows:

inverse quant(quantised coeff, quant index) : Ref

magnitude = |quantised coeff |
if (magnitude! = 0):

magnitude∗ = quant factor(quant index) 13.2.1

magnitude+ = quant offset(quant index) 13.2.1

magnitude+ = 2

magnitude = magnitude//4

return sign(quantised coeff) ∗magnitude

13.2 Inverse quantisation 62

Note:

1. Dirac quantisation is an integer approximation of dead-zone quantisation, in which a value is quantised

as

|x| //qf

for x ≥ 0 or

− |x| //qf

Since this process involves rounding down, the inverse quantisation process adds an offset to reconstructed

values after multiplying by qf . This produces a value on average closer to the original value.

2. The pseudocode description separates inverse quantisation from coefficient unpacking. However, since

dead-zone quantisation is used, the inverse quant() function must compute the magnitude. Hence it

is more efficient to first extract the coefficient magnitude, then inverse quantise, and then extract the

coefficient sign.

3. In the low delay syntax, the quantisation index is limited to 6 bits, i.e. a maximum value of 63. In the

core syntax this limit will also suffice for 8 bit data and a 4-level transform, but the maximum value will

in general depend upon the video bit depth, the type of wavelet filter and the transform depth. A value

of 127 will account for most practical situations.

13.2.1 Quantisation factors and offsets

This section defines the operation of the quant factor() and quant offset() functions for performing inversion

quantisation.

Quantisation factors shall be determined as follows:

quant factor(index) : Ref

base = 2q//4

if ((q%4) == 0):

return 4 ∗ base

else if ((q%4) == 1):

return (503829 ∗ base + 52958)//105917

else if ((q%4) == 2):

return (665857 ∗ base + 58854)//117708

else if ((q%4) == 3):

return (440253 ∗ base + 32722)//65444

For intra pictures, offsets are approximately 1/2 of the quantisation factors, and for inter pictures they are 3/8

- these mark the reconstruction point within the quantisation interval:

quant offset(index) : Ref

if (index == 0):

offset = 1

else:

if (is intra()):

if (index == 1):

offset = 2

else:

offset = (quant factor(index) + 1)//2

else:

offset = (quant factor(index) ∗ 3 + 4)//8

return offset

13.3 Intra DC subband prediction 63

The value of index passed to both functions shall be greater than or equal 0.

Note: The quantisation offsets have been selected so as to make inverse quantisation and re-quantisation

by the same quantisation factor transparent. This requires that

3 ≤ quant offset + 2 < quant factor

– hence the special conditions for quantisation indexes 0 and 1.

13.3 Intra DC subband prediction

This section defines the operation of the intra dc prediction(band) function for reconstructing values within

Intra picture DC subbands using spatial prediction.

This function may be applied once all coefficients within the DC band have been unpacked, although it may

be applied progressively to each coefficient as soon as it has been unpacked.

Intra DC values shall be derived by spatial prediction using the mean of the three values to the left, top-left

and above a coefficient (where available).

The Intra DC subband prediction process shall be defined as follows:

intra dc prediction(band) : Ref

prediction = 0

for v = 0 to height(band)− 1:

for h = 0 to width(band)− 1:

if (h > 0 and v > 0):

prediction = mean(band[v][h− 1], band[v − 1][h− 1], band[v − 1][h])

else if (h > 0 and v == 0):

prediction = band[0][h− 1]

else if (h == 0 and v > 0):

prediction = band[v − 1][0]

else:

prediction = 0

band[v][h]+ = prediction

13.4 Core syntax wavelet coefficient unpacking

This section defines the overall operation of the core transform data(comp) process for unpacking the set of

coefficient subbands corresponding to a video component (Y, C1 or C2) of a picture in the core Dirac syntax,

according to the conventions set out in Section 13.1.

In the Dirac core syntax, subband data shall be entropy coded. It shall be arranged by level and orientation,

from level 0 up to level state[DWT DEPTH]. Coefficients may be VLC or arithmetic coded. Where arithmetic

coding is used, the unpacking process for each subband is contingent on data from subbands of the same

orientation in the next lower level. This is the parent subband; the subband of the same orientation in the

next higher level is the child subband.

Unpacking an individual subband therefore requires prior unpacking of the parent subband, and of its parent,

and so on until level 1 is reached (unpacking level 1 subbands does not depend upon the single level 0 DC

band).

Note: The data for each subband consists of a subband header and a block of coded coefficient data. The

subband header contains a length code giving the number of bytes of the block of coded data. The transform

13.4 Core syntax wavelet coefficient unpacking 64

data can therefore be parsed without invoking entropy decoding at all, since the length codes allow a parser

to skip from one subband header to the next.

13.4.1 Overall process

The overall core transform data() process shall be defined as follows:

core transform data(comp) : Ref

coeff data = initialise wavelet data(comp) 13.1.1

byte align()

subband(coeff data, 0,LL) 13.4.2

for level = 1 to state[DWT DEPTH]:

for each orient in HL,LH,HH:

byte align()

subband(coeff data, level, orient) 13.4.2

return data

13.4.2 Subbands

This section defines the process for unpacking coefficients of a specified level and orientation orient.

The overall process shall consist of reading a byte-aligned header for each subband, including a length code

for the subsequent arithmetically-coded data. Subband data shall be initialised to 0. If the length code is 0,

the subband shall be skipped and all data within it shall remain set to zero.

Intra DC bands are predicted, and so must additionally be reconstructed.

The subband unpacking process shall be defined as follows:

subband(coeff data, level, orient) : Ref

length = read uint()

zero subband data(coeff data[level][orient]) 13.4.2.1

if (length == 0):

byte align()

else:

quant index = read uint()

byte align()

subband coeffs(coeff data, level, orient, length, quant index) 13.4.2.2

if (is intra() and level == 0):

intra dc prediction(coeff data[level][orient]) 13.3

13.4.2.1 Zero subband

The zero subband() process shall sets all coefficients in a given subband to 0.

It shall be defined as follows:

zero subband data(band) : Ref

for y = 0 to height(band)− 1:

for x = 0 to width(band)− 1:

band[y][x] = 0

13.4 Core syntax wavelet coefficient unpacking 65

13.4.2.2 Non-skipped subbands

Data within subbands may be split into one or more rectangular codeblocks (Figure 13.4.3). Codeblocks

shall be scanned in raster order across the subband and coefficients shall be scanned in raster order within

each codeblock.

The subband coeffs() process shall be defined as follows:

subband coeffs(coeff data, level, orient, length, quant index) : Ref

state[BITS LEFT] = 8 ∗ length

if (using ac() == True):

ctx labels =

[SIGN ZERO, SIGN POS, SIGN NEG, ZPZN F1,

ZPNN F1, ZP F2, ZP F3, ZP F4, ZP F5, ZP F6+,

NPZN F1, NPNN F1, NP F2, NP F3, NP F4,

NP F5, NP F6+, COEFF DATA, ZERO BLOCK,

Q OFFSET FOLLOW, Q OFFSET DATA,

Q OFFSET SIGN]

initialise arithmetic decoding(ctx labels) B.2.2

for y = 0 to state[CODEBLOCKS Y][level]− 1:

for x = 0 to state[CODEBLOCKS X][level]− 1:

codeblock(coeff data, level, orient, x, y, quant index) 13.4.3

flush inputb() A.3.1

The key to the context labels is explained in Section 13.4.4.4.

13.4.3 Subband codeblocks

This section defines the operation of the process:

codeblock(band, parent, level, orient, cx, cy, quant index)

This process shall unpack coefficients within the codeblock at position (cx, cy). The dimensions of the codeblock

shall be as defined in section 13.4.3.1. The process for unpacking coefficients within the codeblock given these

dimensions shall be as defined in section 13.4.3.2.

13.4.3.1 Codeblock dimensions

Each codeblock shall cover coefficients in the horizontal range cb left to cb right− 1 and in the vertical range

cb top to cb bottom− 1 where these values shall be defined by the functions:

cb left(x, band, level) = (width(band) ∗ x)//state[CODEBLOCKS X][level]

cb right(x, band, level) = (width(band) ∗ (x + 1))//state[CODEBLOCKS X][level]

cb top(y, band, level) = (height(band) ∗ y)//state[CODEBLOCKS Y][level][vertical]

bc bottom(y, band, level) = (height(band) ∗ (y + 1))//state[CODEBLOCKS Y][level][vertical]

where x and y are the codeblock coordinates within the subband.

13.4.3.2 Codeblock unpacking loop

The codeblock unpacking process shall be defined as follows:

13.4 Core syntax wavelet coefficient unpacking 66

codeblock(coeff data, level, orient, cx, cy, quant index) : Ref

skipped = zero flag(level) 13.4.3.3

if (skipped == False):

band = coeff data[level][orient]

quant idx+ = codeblock quant offset() 13.4.3.4

for y = cb top(cy, band, level) to cb bottom(cy, band, level)− 1: 13.4.3.1

for x = cb left(cx, band, level) to cb right(cx, band, level)− 1: 13.4.3.1

coeff unpack(coeff data, level, orient, x, y, quant index)
13.4.4

If the codeblock is skipped, then coefficients within that codeblock shall remain zero.

The function codeblock quant offset() returns a signed value, but the quantiser offset values coded in the

stream shall be constrained so that the reconstructed value of quant index shall be non-negative.

Note: Codeblock quantisers are encoded differentially in the stream, and the value of quant index is modified

by this function (all variables) are passed by reference). A decoder ought to check that the reconstructed value

of quant index falls within the bounds it supports.

13.4.3.3 Skipped codeblock flag

The skipped codeblock flag process shall be as follows:

zero flag(level) : Ref

num blocks = state[CODEBLOCKS X][level] ∗ state[CODEBLOCKS Y][level]

if (numblocks == 1):

return False

else if (using ac() == True):

return read boola(ZERO BLOCK)

else:

return read boolb()

If the number of codeblocks is 1, then zero flag() shall return False.

If arithmetic coding is employed, then the zero flag shall be decoded using the context probability indicated

by the ZERO BLOCK label, as defined in annex B.2.4.

13.4.3.4 Codeblock quantiser offset

The codeblock quant offset() process shall be defined as follows:

codeblock quant offset() : Ref

if (state[CODEBLOCK MODE] == 0):

return 0

else if (using ac() == True):

return read sinta(quant context probs())

else:

return read sintb()

where quant context probs() shall return the context probability label set:

{[Q OFFSET FOLLOW], Q OFFSET DATA, Q OFFSET SIGN}

13.4 Core syntax wavelet coefficient unpacking 67

13.4.4 Subband coefficients

This section describes the operation of the coeff unpack(coeff data, level, orient, quant idx, x, y) process for

unpacking an individual coefficient in position (x, y) in the subband coeff data[level][orient].

Unpacking a coefficient shall make use of entropy decoding, inverse quantisation and, in the case of DC (level

0) bands of Intra pictures, neighbourhood prediction.

Arithmetic coding uses a highly compact set of contexts, with magnitudes contextualised on whether parent

values and neighbouring values are zero or non-zero. See Annex A.4 for a definition of the Dirac arithmetic

decoder.

The process for coefficient unpacking shall comprise up to four stages:

1. (for arithmetic coding only) determination of the magnitude context, based on whether the parent or

neighbouring values are zero,

2. (for arithmetic coding only) determination of the sign context, based on the predicted sign value,

3. entropy decoding of the quantized coefficient value, and

4. inverse quantization of the quantized value.

The coeff unpack() process shall be defined as follows:

coeff unpack(coeff data, level, orient, quant index, x, y) : Ref

if (using ac() == True):

parent = zero parent(coeff data, level, orient, x, y) 13.4.4.1

nhood = zero nhood(coeff data[level][orient], x, y) 13.4.4.2

sign pred = sign predict(coeff data[level][orient], orient, x, y) 13.4.4.3

context prob set = select coeff ctxs(nhood, parent, sign pred) 13.4.4.4

quant coeff = read sinta(context prob set)

else:

quant coeff = read sintb()

coeff data[level][orient][y][x] = inverse quant(quant coeff, quant index) 13.2

13.4.4.1 Zero parent

The function zero parent(coeff data, level, orient, v, h) shall return a boolean flag indicating whether the

parent value of a coefficient in a subband is zero. The parent coefficient shall be the co-located coefficient in

the parent subband, if there is one. There is deemed to be a parent if level ≥ 2. If a parent coefficient does

not exist, True shall be returned.

Note: Levels 0 and 1 have the same number of coefficients. Thus the first level that can be used as a parent

is level 1, with level 2 as its child.

The parent value shall be determined as follows:

zero parent(data, level, orient, x, y) : Ref

if (level >= 2):

parent = data[level − 1][orient][y//2][x//2]

else:

parent = 0

return parent == 0

13.4.4.2 Zero neighbourhood

The zero nhood() function shall return a booleanflag indicating whether the neighbouring values of a given

subband coefficient are all zero.

13.4 Core syntax wavelet coefficient unpacking 68

The zero neighbourhood value shall be determined as follows:

zero nhood(band, x, y) : Ref

if (y > 0 and x > 0):

if ((band[y − 1][x− 1]! = 0 or band[y][x− 1]! = 0) or band[y − 1][x]! = 0):

return False

else if (y > 0 and x == 0):

if (band[y − 1][0]! = 0):

return False

else if (y == 0 and x > 0):

if (band[0][x− 1]! = 0):

return False

return True

13.4.4.3 Sign prediction

The sign predict() function shall return a prediction for the sign of the current pixel.

Correlation within subbands depends upon orientation, and so this is taken into account in forming the

prediction.

For vertically-oriented (HL) bands, the predictor shall be the sign of the coefficient above the current coefficient;

for horizontally-oriented (LH) bands, the predictor shall be the sign of the coefficient to the left.

The predictions shall be used only for the conditioning of the sign contexts.

The sign prediction value shall be determined as follows:

sign predict(band, orient, x, y) : Ref

if (orient == HL and y == 0):

return 0

else if (orient == HL and y > 0):

return sign(band[y − 1][x])

else if (orient == LH and x == 0):

return 0

else if (orient == LH and x > 0):

return sign(band[y][x− 1])

else:

return 0

13.4.4.4 Coefficient context selection

This section defines the coefficient context selection function which shall return a map of context probability

labels for decoding a coefficient value. Context probabilities shall be as defined in annex A.4.1.

The map m returned shall comprise three elements, accessed by the labels FOLLOW, DATA, and SIGN, where:

• m[FOLLOW] is an array of labels

• m[DATA] is a label

• m[SIGN] is a label

The elements of the map returned by

select coeff contexts(zero nhood, parent, sign pred)

shall be as defined in Table 13.1, for values of zero parent, zero nhood and sign pred, where the context

labels (e.g. ZPZN F1, ZP F2, COEFF DATAand SIGN ZERO) correspond to context probabilities (i.e. 16

bit unsigned integers) stored in the decoded state as defined in annex A.4.1.

13.4 Core syntax wavelet coefficient unpacking 69

The three columns on the left of table 13.1 represent the three inputs to the coefficient context selection

function. The output of the function is a map with three elements. These elements are accessed by the labels

FOLLOW, DATA and SIGN. The values of the three elements of the map are defined in the rightmost column

for each set of inputs.

Note: The follow context probability sets are arrays indexed from zero as per annex A.4.3.1. Note also that

the parent values affect the context of all follow bits, and that neighbour values only affect the context of the

first follow bit. A common data context probability is used for all coefficients.

Key to interpretation of the label names:

ZP zero parent

NP non-zero parent

ZN zero neighbour

NN non-zerro neighbour

Fn follow bit, bin N (n+ means bin n and higher)

13.4 Core syntax wavelet coefficient unpacking 70

zero parent zero nhood sign pred Context map

True True 0 FOLLOW [ZPZN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

DATA COEFF DATA

SIGN SIGN ZERO

True True < 0 FOLLOW [ZPZN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

DATA COEFF DATA

SIGN SIGN NEG

True True > 0 FOLLOW [ZPZN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

DATA COEFF DATA

SIGN SIGN POS

True False 0 FOLLOW [ZPNN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

DATA COEFF DATA

SIGN SIGN ZERO

True False < 0 FOLLOW [ZPNN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

DATA COEFF DATA

SIGN SIGN NEG

True False > 0 FOLLOW [ZPNN F1,ZP F2,ZP F3, ZP F4,ZP F5,ZP F6+]

DATA COEFF DATA

SIGN SIGN POS

False True 0 FOLLOW [NPZN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

DATA COEFF DATA

SIGN SIGN ZERO

False True < 0 FOLLOW [NPZN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

DATA COEFF DATA

SIGN SIGN NEG

False True > 0 FOLLOW [NPZN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

DATA COEFF DATA

SIGN SIGN POS

False False 0 FOLLOW [NPNN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

DATA COEFF DATA

SIGN SIGN ZERO

False False < 0 FOLLOW [NPNN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

DATA COEFF DATA

SIGN SIGN NEG

False False > 0 FOLLOW [NPNN F1,NP F2,NP F3, NP F4,NP F5,NP F6+]

DATA COEFF DATA

SIGN SIGN POS

Table 13.1: Subband coefficient context sets

13.5 Low delay wavelet coefficient unpacking 71

13.5 Low delay wavelet coefficient unpacking

This section defines the stream syntax that shall be used for low delay profiles. T his section defines the syntax

and parsing operations only; picture decoding operations are defined in Section 15.

In low delay operation, the Dirac syntax shall partition the wavelet coefficients into a number of slices, from

all subbands, corresponding to localized areas of the picture

A slice shall meet the following requirements:

1. A single quantizer, weighted for each subband by a quantization matrix, shall be used for quantization

of the coefficients in each slice.

2. All wavelet coefficients shall be entropy-coded using variable-length coding alone. Arithmetic coding

shall not be used.

3. The number of bytes used per slice shall be the same, to within one byte, for each slice in a picture.

4. Each picture may change the slice parameters within the picture by setting the relevant wavelet transform

parameters (Section 11.3.4).

Note:

1. The slice structure implies that in practice incremental picture decoding can be easily achieved without

accumulating an entire picture data set, yielding a decoding delay proportional to the height of the slices.

(The actual achievable delay may be more than one slice height due to vertical filtering delay).

2. Using a fixed number of bits per slice does impact on compression efficiency but simplifies both encoder

and decoder hardware, and assists a chain of multiple encoders and decoders using the same slice pa-

rameters in producing identical coding decisions and hence no cascading loss. These factors are of great

significance in a professional environment.

13.5.1 Overall process

The low delay transform data process shall be defined as follows:

low delay transform data()() : Ref

state[Y TRANSFORM] = initialise wavelet data(Y) 13.1.1

state[C1 TRANSFORM] = initialise wavelet data(C1) 13.1.1

state[C2 TRANSFORM] = initialise wavelet data(C2) 13.1.1

for sy = 0 to state[SLICES Y]− 1:

for sx = 0 to state[SLICES X]− 1:

slice(sx, sy) 13.5.2

intra dc prediction(state[Y TRANSFORM][0][LL]) 13.3

intra dc prediction(state[C1 TRANSFORM][0][LL]) 13.3

intra dc prediction(state[C2 TRANSFORM][0][LL]) 13.3

DC values at the top and left edges of a slice shall be predicted from DC values in previously decoded slices,

which must therefore be retained.

13.5.2 Slices

This section defines the operation of the slice(sx, sy) process for unpacking coefficients within the slice with

coordinates (sx, sy).

Each slice shall contain the relevant coefficients from all subbands and for all components. Luma data shall

be unpacked rst, and shall be followed by the chroma data, in which the chroma component coefficients shall

13.5 Low delay wavelet coefficient unpacking 72

be interleaved. A length code shall allow the luma and chroma coefficients each to be terminated early, with

remaining values set to zero by means of bounded read operations.

The overall slice unpacking process shall be defined as follows:

slice(sx, sy) : Ref

slice bits left = 8 ∗ slice bytes(sx, sy) 13.5.3

qindex = read nbits(7)

slice bits left− = 7

slice quantisers(qindex) 13.5.4

length bits = intlog2(8 ∗ slice bytes(sx, sy)− 7)

slice y length = read nbits(length bits)

slice bits left− = length bits

state[BITS LEFT] = slice y length

luma slice band(0,LL, sx, sy) 13.5.5.2

for level = 1 to state[DWT DEPTH]:

for each orient in HL,LH,HH:

luma slice band(level, orient, sx, sy) 13.5.5.2

flush inputb() A.3.1

slice bits left− = slice y length

state[BITS LEFT] = slice bits left

chroma slice band(0,LL, sx, sy) 13.5.5.3

for level = 1 to state[DWT DEPTH]:

for each orient in HL,LH,HH:

chroma slice band(level, orient, sx, sy) 13.5.5.3

flush inputb() A.3.1

slice y length shall satisfy the following condition:

slice y length = 8 ∗ slice bytes(sx, sy)− 7− length bits

Note: Slice decoding makes use of bounded read functions, which return 1 when state[BITS LEFT] is zero.

This means that remaining coefficients are set to 0, since a solitary 1 is the VLC for 0. The logic of slice

decoding applies this twice in each slice: once for luma coefficients, initializing the bits left to slice y length,

and a second time to the chroma coefficients, initializing to the number of bits remaining.

13.5.3 Determining the number of bytes in a slice

The slice bytes(sx, sy) shall be defined as follows:

slice bytes(sx, sy) : Ref

slice num = sy ∗ state[SLICES X] + sx

bytes = ((slice num + 1) ∗ state[SLICE BYTES NUMER])//

state[SLICE BYTES DENOM]

bytes − = ((slice num) ∗ state[SLICE BYTES NUMER])//

state[SLICE BYTES DENOM]

return bytes

Note: This function produces an integer value which will on average be the ratio of

state[SLICE BYTES NUMER] to state[SLICE BYTES DENOM]. In many applications this ratio will not

be an integer number, and the number of bytes will vary from slice to slice by one byte from time to time.

This allows the low delay syntax to support any compression ratio exactly.

13.5 Low delay wavelet coefficient unpacking 73

13.5.4 Setting slice quantisers

This section defines how quantisers for individual subbands are determined from the quantisation matrix and

the quantisation index. The slice quantisers() function shall be defined as follows:

slice quantisers(qindex) : Ref

state[QUANTISER][0][LL] = max(qindex− state[QMATRIX][0][LL], 0)

for level = 1 to state[DWT DEPTH]:

for each orient in HL, LH, HH:

qval = max(qindex− state[QMATRIX][level][orient], 0)

state[QUANTISER][level][orient] = qval

Note: The non-negative quantisation matrix values are subtracted from the slice quantiser value, and so

a higher value in the quantisation matrix represents a lower quantisation index and thus a lower degree of

quantisation. The quantisation index value is also clipped to 0 so that it is non-negative. This ensures that as

many subbands as possible within the slice can be coded losslessly. The quantisation matrix values are set as

part of decoding the transform parameters (section 11.3.5).

13.5.5 Slice subbands

This section defines the operation of the luma slice band(level, orient, sx, sy) for unpacking individual luma

slice subbands, and chroma slice band(level, orient, sx, sy). for unpacking individual chroma slice subbands.

13.5.5.1 Slice subband dimensions

The rectangular set of coefficients covered by a slice component (Y , C1 and C2) is demarcated by the values

slice left, slice right, slice top, slice bottom, defined as fractions of the subband dimensions (Section 13.1.2)

by the following functions:

slice left(sx, level, c) = (subband width(level, c) ∗ sx)//state[SLICES X]

slice right(sx, level, c) = (subband width(level, c) ∗ (sx + 1))//state[SLICES X]

slice top(sy, level, c) = (subband height(level, c) ∗ sy)//state[SLICES Y]

slice bottom(sy, level, c) = (subband height(level, c) ∗ (sy + 1))//state[SLICES Y]

where c = Y for luma coefficients, and C1 or C2 for chroma coefficients.

Note:

• The slice subband area formulae correspond to the codeblock area formulae for the core syntax (Section

13.4.3.1).

• Slice subbands may change dimension by 1 from one slice to another if state[SLICES X] or

state[SLICES Y] do not divide the horizontal or vertical dimensions exactly.

• Chroma slice subbands might not have exactly the scaled dimensions of the luma slice subband, since the

state[SLICES X] and SlicesY values may exactly divide luma dimensions but not chroma dimensions;

and chroma components may receive different padding, depending on the transform depth.

• These issues may be easily avoided in particular applications by choosing suitable values for the transform

depth and state[SLICES X] and SlicesY .

13.5.5.2 Luma slice subband data

The process for unpacking luma slice coefficients shall be defined as follows:

13.5 Low delay wavelet coefficient unpacking 74

luma slice band(level, orient, sx, sy) : Ref

for y = slice top(sy, level, Y) to slice bottom(sy, level, Y)− 1: 13.5.5.1

for x = slice left(sx, level, Y) to slice right(sx, level, Y)− 1: 13.5.5.1

val = read sintb() A.3.3

q = state[QUANTISER][Y][level][orient]

state[Y TRANSFORM][level][orient][y][x] = inverse quant(val, q)

13.5.5.3 Chroma slice subband data

Chroma slice subband coefficients shall follow luma coefficients within each slice. The two chroma components

shall be interleaved coefficient-by-coefficient. The process for unpacking chroma slice coefficients shall be

defined as follows:

luma slice band(level, orient, sx, sy) : Ref

for y = slice top(sy, level, C1) to slice bottom(sy, level, C1)− 1: 13.5.5.1

for x = slice left(sx, level, C1) to slice right(sx, level, C1)− 1: 13.5.5.1

q = state[QUANTISER][level][orient]

val = read sintb() A.3.3

state[C1 TRANSFORM][level][orient] = inverse quant(val, q) 13.2

val = read sintb() A.3.3

state[C2 TRANSFORM][level][orient] = inverse quant(val, q2) 13.2

75

14 Sequence decoding (Informative)

There is no one unique way of describing a Dirac decoder. However the pseudocode below is illustrative code

for a sample decoder. It emphasizes which parts of the decoding process generate decoded output data. Note

that the potential presence of padding or auxiliary data is ignored for clarity.

decode sequence() : Ref

state = {}
decoded pictures = {}
state[REF PICTURES] = {}
parse info() 9.6

video params = sequence header() 10

parse info() 9.6

while (is end of sequence() == False): 9.6.1

if (is seq header() == True): 9.6.1

video params = sequence header() 10

else if (is picture() == True): 9.6.1

picture parse() 11.1

decoded pictures[state[PICTURE NUM]] = picture decode() 15

parse info() 9.6

return {video params, decoded pictures}

The process returns the video parameters, consisting of the essential metadata required for display and inter-

pretation of the video data, and the array of decoded pictures. Each decoded picture contains the three video

component data arrays together with a picture number.

The pseudocode describes the decoding process. Decoding starts by clearing the decoder state and the decoder

output. Thus video sequences may be decoded as independent entities. The first data extracted from the

Dirac stream is parse information. The parse info header indicates what type of data unit follows, and this

information is stored in the decoder state. The decoder continues to read pairs of data unit and parse info

headers until the end of the sequence is reached. The end of sequence is indicated by data in the final parse info

header. If a data unit is a sequence header the decoded video parameters are updated with the information

contained in the header. If the data unit is a picture then:

• the picture is parsed, then decoded

• the picture is placed in the correct position in the output array

Note that since Dirac supports inter as well as intra picture coding, picture numbers within the stream may

not be sequential, and the decoded output pictures will not be placed in the output buffer in order. Annex D

defines the constraints which may be placed upon re-ordering depth.

Sequences need not be decoded from the start: decoding can start from any sequence header according to the

provisions of section 15.3, although some pictures might not be (completely) decodeable due to a chain of ref-

erences reaching back earlier in the stream than the sequence header, introducing dependencies on unavailable

pictures. The behaviour of a decoder when confronted with such pictures is application-specific.

14.1 Non-sequential picture decoding

The ability to decode pictures in a non-sequential manner is important for many applications, such as video

editing. Non-sequential access means decoding a stream in any manner other than decoding pictures sequen-

tially from the beginning of the stream to the end: this may include decoding only intra pictures, decoding

backwards, or decoding pictures in random parts of the stream.

Stream navigation, including non-sequential access is supported by the information in the parse info headers

in the stream (section 9.6).

14.1 Non-sequential picture decoding 76

In order to start decoding, other than at the start of a sequence, the decoder must first synchronize to the

stream. The parse info prefix is present to support such synchronization. A decoder would first search for the

parse info prefix to locate the start of a parse info header. The parse info prefix is not guaranteed to occur

uniquely within parse info headers (the entropy coding used in Dirac precludes this). However, the probability

of a spurious prefix occuring is low: 1 in 232, since the prefix is 4 bytes long. The probability of finding two

spurious prefix sequences separated by the value of the next (or previous) parse offset is 1 in 264.

Having synchronized with the stream the decoder now needs to locate a sequence header in order to find

parameters needed to decode pictures. This may be done by moving back (or forward) through the stream,

using the parse offsets.

The Dirac stream also supports seeking to a particular picture number, since this is contained in each picture

header.

77

15 Picture decoding

This section defines the processes for decoding a picture from a Dirac stream.

Picture decoding depends upon correctly parsing the stream, and decoding operations are dependent on decod-

ing the sequence header and picture metadata (Section 10 and 11) and unpacking the coefficient and motion

data (Sections 13 and 12).

15.1 Overall picture decoding process

Picture data from the current picture being decoded is stored in the state[CURRENT PICTURE] state

variable, which is a map with labels PIC NUM, and Y , C1 and C2 representing luma and chroma data.

After decoding the decoded picture is returned to the decoding application.

The picture decode() process shall be invoked after parsing the picture parse() process and shall be defined

as follows:

picture decode() : Ref

state[CURRENT PICTURE] = {}
state[CURRENT PICTURE][PIC NUM] = state[PICTURE NUM]

if (is ref(()):

ref buffer remove() 15.4

if (state[ZERO RESIDUAL] == False):

inverse wavelet transform() 15.6

else:

state[CURRENT PICTURE][Y] = 0

state[CURRENT PICTURE][C1] = 0

state[CURRENT PICTURE][C2] = 0

if (is inter()):

ref1 = get ref(state[REF1 PICTURE NUM]) 15.4

if (num refs() == 2): 9.6.1

ref2 = get ref(state[REF2 PICTURE NUM]) 15.4

motion compensate(ref1[Y], ref2[Y], state[CURRENT PICTURE][Y], c) 15.8

motion compensate(ref1[C1], ref2[C1], state[CURRENT PICTURE][C1], c) 15.8

motion compensate(ref1[C2], ref2[C2], state[CURRENT PICTURE][C2], c) 15.8

clip picture() 15.9

if (is ref()):

ref buffer add() 15.4

offset output picture(state[CURRENT PICTURE]) 15.10

return state[CURRENT PICTURE]

15.2 Picture reordering

Picture numbers within the stream may not be in numerical order, and subsequent reordering may be required:

the size of the decoded picture buffer required to perform any such reordering may be specified as part of the

application profile and level (Annex D).

15.3 Random access

Sequence headers represent safe entry points for decoding a sequence.

An accessible picture (with reference to a given sequence header) shall be defined as a picture decodeable

without dependence on to data prior to the sequence header in coded order.

15.4 Reference picture buffer management 78

Accessibility should normally imply that each accessible picture has no reference picture prior to the sequence

header, and no chain of references leading to a reference picture prior to the sequence header. A given level

may allow this condition to be relaxed (for example, in P-only coding where unavailable references may be

substituted for by zero pictures), but where no specific provision to the contrary is specified in an applicable

level or profile, it shall apply.

The first picture data unit after a sequence header shall be called the access picture and shall be accessible

with respect to the sequence header. It should normally be an intra picture. If the sequence contains inter

pictures it should normally be an intra reference picture.

All picture data units subsequent to the sequence header in coded order shall also be accessible with respect

to the sequence header if their picture numbers are greater than or equal to that of the access picture. The

access picture therefore represents a temporal access point into the sequence.

Note:

If a sequence satisfies a maximum reordering depth constraint (annex D.2.1.2) of size N all pictures more than

N pictures later than the sequence header will have larger picture numbers than the first picture after the

sequence header, and hence will be accessible. A reordering depth constraint thus implies that after a sequence

header at most N pictures will need to be discarded before all pictures are decodeable.

15.4 Reference picture buffer management

This section specifies how the Dirac stream data shall be used to manage the reference picture buffer state[REF PICTURES].

The reference picture buffer has a maximum size of state[RB SIZE] elements, as set in the applicable level

(Annex D).

The ref picture remove() process shall be defined as follows:

ref picture remove() : Ref

n = state[RETD PIC NUM]

for k = 0 to state[RB SIZE]− 1:

if (state[REF PICTURES][k][PIC NUM] == n):

for j = k to state[RB SIZE]− 2:

state[REF PICTURES][j] = state[REF PICTURES][j + 1]

state[RB SIZE]− = 1

The get ref(n) function shall returns the reference picture in the buffer with picture number n. If there is no

such picture it shall return an all-zero picture.

The ref picture add() process for adding pictures to the reference picture buffer shall proceed according to

the following rules:

Case 1. If the reference picture buffer is not full i.e. has fewer than state[MAX RB SIZE] elements, then

add state[CURRENT PICTURE] to the end of the buffer.

Case 2. If the reference picture is full i.e. it has state[MAX RB SIZE] elements, then remove the first (i.e.

oldest) element of the buffer, state[REF PICTURES][0], set

state[REF PICTURES][i] = state[REF PICTURES][i + 1]

for i = 0 to state[RB SIZE]− 2, and set the last element state[REF PICTURES][state[RB SIZE]− 1] equal

to a copy of state[CURRENT PICTURE].

15.5 Picture IDWT

The inverse discrete wavelet transform process shall consist of transforming the wavelet coefficients for each of

the video components. It shall be defined as follows:

15.6 Component IDWT 79

inverse wavelet transform() : Ref

state[CURRENT PICTURE][Y] = idwt(state[Y TRANSFORM]) 15.6

state[CURRENT PICTURE][C1] = idwt(state[C1 TRANSFORM]) 15.6

state[CURRENT PICTURE][C2] = idwt(state[C2 TRANSFORM]) 15.6

for each c in Y, C1, C2:

idwt pad removal(state[CURRENT PICTURE][c], c) 15.7

15.6 Component IDWT

This section defines the idwt(coeff data) process for reconstructing picture component data from decoded

subband data coeff data using the inverse discrete wavelet transform (IDWT). The IDWT shall be invoked

in the picture decoding process only after successful unpacking of the subband coefficient data (Section 13.4).

The IDWT process shall return a pixel array from the subband wavelet coefficients representing a reconstructed

video component (Y, C1 or C2) for a single picture.

Since wavelet filtering operates on both rows and columns of two-dimensional arrays independently it is useful to

define operators row(a, k) and column(a, k) for extracting rows and columns with index k from a 2-dimensional

array a:

If b = row(a, k) then b[r] is a reference to the value of a[k][r]. This means that modifying the value of b[r]

modifies the value of a[k][r].

If b = column(a, k) then b[r] is a reference the value of a[r][k]. This means that modifying the value of b[r]

modifies the value of a[r][k].

The idwt() process shall be an iterative procedure operating on four subbands (LL, HL,LH and HH) at each

iteration stage to produce a new subband. The procedure shall be as follows

idwt synthesis(coeff data) : Ref

LL band = coeff data[0][LL]

for n = 1 to state[DWT DEPTH]:

new LL = vh synth(LL band, coeff data[n][HL], coeff data[n][LH], coeff data[n][HH]) 15.6.1

LL band = new LL

return LL band

Note that at each stage, the input dimensions of the input LL band will be the same as those of the other

input bands, whereas the output dimensions are double those of the input bands.

15.6.1 Vertical and horizontal synthesis

This section specifies the operation of the vertical and horizontal synthesis process:

vh synth(LL data, HL data, LH data, HH data)

vh synth shall return an array of twice the dimensions of each of the input argument arrays.

vh synth is repeatedly invoked by the IDWT synthesis process and operates on four subband data arrays of

identical dimensions to produce a new array synth, which shall be returned as the result of the process.

Step 1. synth is a temporary two-dimensional array that shall be initialised so that:

width(synth) = 2 ∗ width(LL data)

height(synth) = 2 ∗ height(LL data)

Step 2. The data from the four arrays shall be interleaved as follows:

15.6 Component IDWT 80

. . .

for y = 0 to (height(synth)//2)− 1:

for x = 0 to (width(synth)//2)− 1:

synth[2 ∗ y][2 ∗ x] = LL data[y][x]

synth[2 ∗ y][2 ∗ x + 1] = HL data[y][x]

synth[2 ∗ y + 1][2 ∗ x] = LH data[y][x]

synth[2 ∗ y + 1][2 ∗ x + 1] = HH data[y][x]

. . .

Note: This enables in-place calculation during the inverse filter process.

Step 3. Data shall be synthesised vertically by operating on each column of data using a one-dimensional

filter, and then horizontally by operating on each row. The one-dimensional filters used shall be determined

by the value of state[WAVELET INDEX] according to Tables 15.1–15.7. The process shall be as follows:

. . .

for x = 0 to width(synth)− 1:

1d synthesis(column(synth, x)) 15.6.2

for y = 0 to height(synth)− 1:

1d synthesis(row(synth, y)) 15.6.2

. . .

Step 4. Finally, the synthesised subband data shall implement a bitshift to remove any accuracy bits. The

bit shift value filtershift() used shall be determined by the value of state[WAVELET INDEX] according to

Tables 15.1–15.7. The process shall be as follows:

. . .

shift = filtershift()

if (shift > 0):

for y = 0 to height(synth)− 1:

for x = 0 to width(synth)− 1:

synth[y][x] = (synth[y][x] + (1 << (shift− 1))) À shift

Note: Accuracy bits are added in the encoder by shifting up all coefficients in the LL band prior to applying

any filtering (this includes an initial shift of all values in the component data). Adding a small shift before each

decomposition stage is the most efficient way of providing additional resolution mitigating aliasing through

non-linear rounding effects.

15.6.2 One-dimensional synthesis

This section specifies the one-dimensional synthesis process 1d synthesis(), which shall apply to a 1-dimensional

array of coefficients of even length, consisting of either a row or a column of a 2-dimensional integral data

array.

The one-dimensional synthesis process shall comprise the application of a number of reversible integer lifting

filter operations.

Lifting filtering operations shall be one of four types, Type 1, Type 2, Type 3 and Type 4. Each type shall be

characterised by four elements:

• a filter length value L

• a filter offset value D

• an array of taps of length L: taps[0], . . . , taps[L− 1]

• a scale factor S

15.6 Component IDWT 81

The four types of lifting operations shall be defined by the functions:

lift1(A, L, D, taps),

lift2(A, L, D, taps),

lift3(A, L, D, taps), and

lift4(A, L, D, taps)

respectively and shall act upon the values in a one-dimensional array A.

The Type 1 lifting process lift1(A, L, D, taps) shall be defined as follows:

lift1(A, L, D, taps) : Ref

for n = 0 to (length(A)//2)− 1:

sum = 0

for i = D to L + D − 1:

pos = 2 ∗ (n + i)− 1

pos = min(pos, length(A)− 1)

pos = max(pos, 1)

sum+ = taps[i−D] ∗A[pos]

if (S > 0):

sum+ = (1 ¿ (s− 1))

A[2 ∗ n]+ = (sum À s)

The Type 2 lifting process lift2(A, L, D, taps) shall be defined as follows:

lift2(A, L, D, taps) : Ref

for n = 0 to (length(A)//2)− 1:

sum = 0

for i = D to L + D − 1:

pos = 2 ∗ (n + i)− 1

pos = min(pos, length(A)− 1)

pos = max(pos, 1)

sum+ = ti ∗A[pos]

sum+ = (1 ¿ (s− 1))

A[2 ∗ n]− = (sum À s)

The Type 3 lifting process lift3(A, L, D, taps) shall be defined as follows:

lift3(A, L, D, taps) : Ref

for n = 0 to (length(A)//2)− 1:

sum = 0

for i = D to L + D − 1:

pos = 2 ∗ (n + i)

pos = min(pos, length(A)− 2)

pos = max(pos, 0)

sum+ = ti ∗A[pos]

sum+ = (1 ¿ (s− 1))

A[2 ∗ n + 1]+ = (sum À s)

The Type 4 lifting process lift4(A, L, D, taps) shall be defined as follows:

15.6 Component IDWT 82

lift4(A, L, D, taps) : Ref

for n = 0 to (length(A)//2)− 1:

sum = 0

for i = D to L + D − 1:

pos = 2 ∗ (n + i)

pos = min(pos, length(A)− 2)

pos = max(pos, 0)

sum+ = ti ∗A[pos]

sum+ = (1 ¿ (s− 1))

A[2 ∗ n + 1]− = (sum À s)

1d synthesis shall apply the sequence of lifting filters specified in Section 15.6.3 corresponding to the value of

state[WAVELET INDEX],and shall invoke the corresponding lifting processes with the parameters defined.

15.6.2.1 Mathematical formulation of lifting processes (Informative)

The lifting processes defined in the previous section are extremely similar, and careful attention should be paid

to the detail of their operation in any implementation. The four different variants arise from two factors: the

phase (odd or even) of the lifting operation, and their implementation using integer-only operations, which

introduces rounding errors and makes addition and subtraction subtly different.

A lifting operation either modifies the odd coefficients by a linear combination of the even coefficients, or

vice-versa. Mathematically, the four types of filter may be described as follows.

Type 1 and Type 2 lifting filtering operations modify the even coefficients by the odd coefficients:

A[2 ∗ n] + =

MX

i=−N

ti ∗A[2 ∗ (n + i) + 1] + (1 ¿ (s− 1))

!
À s (Type 1)

A[2 ∗ n] − =

MX

i=−N

ti ∗A[2 ∗ (n + i) + 1] + (1 ¿ (s− 1))

!
À s (Type 2)

Type 3 and Type 4 lifting filtering operation modify the odd coefficients by the even coefficients:

A[2 ∗ n + 1] + =

MX

i=−N

tiA[2 ∗ (n + i)] + (1 ¿ (s− 1))

!
À s (Type 3)

A[2 ∗ n + 1] − =

MX

i=−N

tiA[2 ∗ (n + i)] + (1 ¿ (s− 1))

!
À s (Type 4)

The distinctions between Type 1 and Type 2 and between Type 3 and Type 4 filters are necessary because

integer division (bit-shifting) is being used, and so the filters are non-linear: a Type 1 or Type 3 filter with

taps ti is not equivalent to an Type 2 or Type 4 filter with taps −ti.

Edge extension is used where the filter would otherwise extend beyond the boundaries of the array. This is

slightly different between Types 1 and 2 on the one hand and Types 3 and 4 on the other. This is because

even values and odd values must be extended separately to maintain the correct phase (and hence invertibility

of the filter). For example, a Type 1 filter must use the values 1 and length(A) − 1 at the edges because (as

the length is even) these are the odd values nearest the edges.

Further information on wavelet filtering and lifting is provided in Annex G.

15.6.3 Lifting filter parameters

The lifting filters and filter bit-shift operations that apply for each value state[WAVELET INDEX] shall be

as specified in Tables 15.1 to 15.7 below.

15.6 Component IDWT 83

Lifting steps:

1. Type 2, S = 2, L = 2, D = 0, taps = [1, 1] i.e.

A[2 ∗ n]− = (A[2 ∗ n− 1] + A[2 ∗ n + 1] + 2) À 2

2. Type 3, S = 4, L = 4, D = −1, taps = [−1, 9, 9,−1] i.e.

A[2 ∗ n + 1]+ = (−A[2 ∗ n− 2] + 9 ∗A[2 ∗ n] + 9 ∗A[2 ∗ n + 2]−A[2 ∗ n + 4] + 8) À 4

filtershift() returns 1

Table 15.1: state[WAVELET INDEX] == 0: Deslauriers-Dubuc (9,7) lifting stages and shift values

Lifting steps:

1. Type 2, S = 2, L = 2, D = 0, taps = [1, 1] i.e.

A[2 ∗ n]− = (A[2 ∗ n− 1] + A[2 ∗ n + 1] + 2) À 2

2. Type 3, S = 1, L = 2, D = 0, taps = [1, 1] i.e.

A[2 ∗ n + 1]+ = (A[2 ∗ n] + A[2 ∗ n + 2] + 1) À 1

filtershift() returns 1

Table 15.2: state[WAVELET INDEX] == 1: LeGall (5,3) lifting stages and shift values

Lifting steps:

1. Type 2, S = 5, L = 4, D = −1, taps = [−1, 9, 9,−1] i.e.

A[2 ∗ n]− = (−A[2 ∗ n− 3] + 9 ∗A[2 ∗ n− 1] + 9 ∗A[2 ∗ n + 1]−A[2 ∗ n + 3] + 16) À 5

2. Type 3, S = 4, L = 4, D = −1, taps = [−1, 9, 9,−1] i.e.

A[2 ∗ n + 1]+ = (−A[2 ∗ n− 2] + 9 ∗A[2 ∗ n] + 9 ∗A[2 ∗ n + 2]−A[2 ∗ n + 4] + 8) À 4

filtershift() returns 1

Table 15.3: state[WAVELET INDEX] == 2: Deslauriers-Dubuc (13,7) lifting stages and shift values

Lifting steps:

1. Type 2, S = 1, L = 1, D = 1, taps = [1] i.e.

A[2 ∗ n]− = (A[2 ∗ n + 1] + 1) À 1

2. Type 3, S = 0, L = 1, D = 0, taps = [1] i.e.

A[2 ∗ n + 1]+ = A[2 ∗ n]

filtershift() returns 0

Table 15.4: state[WAVELET INDEX] == 3: Haar filter with no shift

Lifting steps:

1. Type 2, S = 1, L = 1, D = 1, taps = [1] i.e.

A[2 ∗ n]− = (A[2 ∗ n + 1] + 1) À 1

2. Type 3, S = 0, L = 1, D = 0, taps = [1] i.e.

A[2 ∗ n + 1]+ = A[2 ∗ n]

filtershift() returns 1

Table 15.5: state[WAVELET INDEX] == 4: Haar filter with single shift

15.6 Component IDWT 84

Lifting steps:

1. Type 3, S = 8, L = 8, D = −3, taps = []− 2, 10,−25, 81, 81,−25, 10,−2] i.e.

A[2 ∗ n + 1] + = (−2 ∗ (A[2 ∗ n− 6] + A[2 ∗ n + 8]) + 10 ∗ (A[2 ∗ n− 4] + A[2 ∗ n + 6])

−25 ∗ (A[2 ∗ n− 2] + A[2 ∗ n + 4]) + 81 ∗ (A[2 ∗ n] + A[2 ∗ n + 2]) + 128) À 8

1. Type 2, S = 8, L = 8, D = −3, taps = [−8, 21,−46, 161, 161,−46, 21,−8] i.e.

A[2 ∗ n] − = (−8 ∗ (A[2 ∗ n− 7] + A[2 ∗ n + 7]) + 21 ∗ (A[2 ∗ n− 5] + A[2 ∗ n + 5])

−46 ∗ (A[2 ∗ n− 3] + A[2 ∗ n + 3]) + 161 ∗ (A[2 ∗ n− 1] + A[2 ∗ n + 1]) + 128) À 8

filtershift() returns 0

Table 15.6: state[WAVELET INDEX] == 5: Fidelity filter for improved downconversion and anti-aliasing

Lifting steps:

1. Type 2, S = 12, L = 2, D = 0, taps = [1817, 1817] i.e.

A[2 ∗ n]− = (1817 ∗A[2 ∗ n− 1] + 1817 ∗A[2 ∗ n + 1] + 2048) À 12

2. Type 4, S = 12, L = 2, D = 0, taps = [3616, 3616]i.e.

A[2 ∗ n + 1]− = (3616 ∗A[2 ∗ n] + 3616 ∗A[2 ∗ n + 2] + 2048) À 12

3. Type 1, S = 12, L = 2, D = 0, taps = [217, 217] i.e.

A[2 ∗ n]+ = (217 ∗A[2 ∗ n− 1] + 217 ∗A[2 ∗ n + 1] + 2048) À 12

4. Type 3, S = 12, L = 2, D = 0, taps = [6497, 6497] i.e.

A[2 ∗ n + 1]+ = (6497 ∗A[2 ∗ n] + 6497 ∗A[2 ∗ n + 2] + 2048) À 12

filtershift() returns 1

Table 15.7: state[WAVELET INDEX] == 6: Integer lifting approximation to Daubechies (9,7)

15.7 Removal of IDWT pad values 85

15.7 Removal of IDWT pad values

This section defines the decoding process idwt pad removal(pic, c) for removing extraneous values after per-

forming the IDWT.

Section 13.1.1 requires that subband coefficient data arrays are padded to ensure that the reconstructed data

array pic has dimensions divisible by 2state[DWT DEPTH].

Values width and height are defined to be the appropriate dimensions of the component data:

• If c = Y , then

width = state[LUMA WIDTH]

height = state[LUMA HEIGHT]

• else if c = C1 or c = C2,

width = state[CHROMA WIDTH]

height = state[CHROMA HEIGHT]

All component data pic[j][i] with

• i ≥ width, or

• j ≥ height

shall be discarded and pic shall be resized to have width width and height height.

15.8 Motion compensation

This section defines the operation of the process motion compensate(ref1, ref2, pic, c) for motion-compensating

a picture component array pic of type c = Y, U or V from reference component arrays ref1 and ref2 of the

same type.

This process shall be invoked for each component in a picture, subsequent to the decoding of coefficient data,

specified in Section 13.4, and the Inverse Wavelet Transform (IWT), specified in Section 15.6.

Motion compensation shall use the motion block data state[BLOCK DATA] and optionally may use the global

motion parameters state[GLOBAL PARAMS].

15.8.1 Overlapped Block Motion Compensation (OBMC) (Informative)

Motion compensated prediction methods provide methods for determining predictions for pixels in the current

picture by using motion vectors to define offsets from those pixels to pixels in previously decoded pictures.

Motion compensation techniques vary in how those pixels are grouped together, and how a prediction is formed

for pixels in a given group. In conventional block motion compensation, as used in MPEG2, H.264 and many

other codecs, the picture is divided into disjoint rectangular blocks and the motion vector or vectors associated

with that block defines the offset(s) into the reference pictures.

In OBMC, by contrast, the predicted picture is divided into a regular overlapping blocks of dimensions xblen

by yblen that cover at least the entire picture area as shown in figure 15.1. Overlapping is ensured by starting

each block at a horizontal separation xbsep and a vertical separation ybsep from its neighbours, where these

values are less than the corresponding block dimensions.

The overlap between blocks horizontally is xoffset = (xblen−xbsep)/2 both on the left and on the right, and

vertically is yoffset = (yblen−ybsep)/2 both on the top and the bottom. As a result pixels in the overlapping

areas lie in more than one block, and so more than one motion vector set (and set of associated predictions)

15.8 Motion compensation 86

picture_width
(0,0)

+x

p
i
c
t
u
r
e
_
h
e
i
g
h
t

+y
Not to scale

Figure 15.1: Block coverage of the predicted picture

applies to them. Indeed, a pixel may have up to eight predictions, as it may belong to up to four blocks, each of

which may have up to two motion vectors. These are combined into a single prediction by using weights, which

are so constructed so as to sum to 1. In the Dirac integer implementation, fractional weights are achieved by

insisting that weights sum to a power of 2, which is then shifted out once all contributions have been summed.

In Dirac blocks are positioned so that blocks will overspill the left and top edges by (xoffset) and (yoffset)

pixels. The number of blocks has been determined (Section 11.2.4) so that the picture area is wholly covered,

and the overspill on the right hand and bottom edges will be at least the amount on the left and top edges.

Indeed, the number of blocks has been set so that the blocks divide into whole superblocks (sets of 4x4 blocks),

which mean that some blocks may fall entirely out of the picture area. Any predictions for pixels outside the

actual picture area are discarded.

15.8.2 Overall motion compensation process

The motion compensation process shall form an integer prediction for each pixel in the predicted picture

component pic, which shall be added to the pixel value, and then clipped to keep it in range.

The motion compensate() process is defined by means of a temporary data array mc tmp for storing the

motion-compensated prediction for the current picture.

The motion compensate() process shall be defined as follows:

15.8 Motion compensation 87

motion compensate(ref1, ref2, pic, c) : Ref

if (c == Y):

bit depth = state[LUMA DEPTH]

else:

bit depth = state[CHROMA DEPTH]

init dimensions(c) 15.8.3

mc tmp = init temp array() 15.8.4

for j = 0 to state[BLOCKS Y]− 1:

for i = 0 to state[BLOCKS X]− 1:

block mc(mc tmp, i, j) 15.8.5

for y = 0 to state[LEN Y]− 1:

for x = 0 to state[LEN X]− 1:

pic[y][x]+ = (mc tmp[y][x] + 32) À 6

pic[y][x] = clip(pic[y][x],−2bit depth−1, 2bit depth−1 − 1)

Note: Six bits are used for the overlapped-block weighting matrix. This ensures that 10-bit data may

normally be motion compensated using 16-bit words as per Section 15.8.5.

15.8.3 Dimensions

Since motion compensation shall apply to both luma and (potentially subsampled) chroma data, for simplicity

a number of variables are defined by the init dimensions() function, which is as follows:

init dimensions(c) : Ref

if (c == Y):

state[LEN X] = state[LUMA WIDTH]

state[LEN Y] = state[LUMA HEIGHT]

state[XBLEN] = state[LUMA XBLEN]

state[YBLEN] = state[LUMA YBLEN]

state[XBSEP] = state[LUMA XBSEP]

state[YBSEP] = state[LUMA YBSEP]

else:

state[LEN X] = state[CHROMA WIDTH]

state[LEN Y] = state[CHROMA HEIGHT]

state[XBLEN] = state[CHROMA XBLEN]

state[YBLEN] = state[CHROMA YBLEN]

state[XBSEP] = state[CHROMA XBSEP]

state[YBSEP] = state[CHROMA YBSEP]

state[XOFFSET] = (state[XBLEN]−XBsep)//2

state[YOFFSET] = (state[YBLEN]− Y Bsep)//2

Note: The subband data that makes up the IWT coefficients is padded in order that the IWT may function

correctly. For simplicity, in this specification, padding data is removed after the IWT has been performed so

that the picture data and reference data arrays have the same dimensions for motion compensation. However,

it may be more efficient to perform all operations prior to the output of pictures using padded data, i.e. to

discard padding values subsequent to motion compensation. Such a course of action is equivalent, so long as

it is realised that blocks must be regarded as edge blocks if they overlap the actual picture area, not the larger

area produced by padding.

15.8 Motion compensation 88

15.8.4 Initialising the motion compensated data array

The init temp array() function shall return a two-dimensional data array with horizontal size state[LEN X]

and vertical size state[LEN Y], such that each element of the two dimensional array shall be set to zero.

15.8.5 Motion compensation of a block

This section defines the block mc() process for motion-compensating a single block.

Each block shall be motion-compensated by applying a weighting matrix to a block prediction and adding the

weighted prediction into the motion-compensated prediction array.

The block mc() process shall be defined as follows:

block mc(mc pred, i, j) : Ref

xstart = i ∗ state[XBSEP]− state[XOFFSET]

ystart = j ∗ state[XBSEP]− state[XOFFSET]

xstop = (i + 1) ∗ state[XBSEP] + state[XOFFSET]

ystop = (j + 1) ∗ state[YBSEP] + state[YOFFSET]

mode = state[BLOCK DATA][j][i][RMODE]

W = spatial wt(i, j) 15.8.7

for y = max(ystart, 0) to min(ystop, state[LEN Y])− 1:

for x = max(xstart, 0) to min(xstop, state[LEN X])− 1:

p = x− xstart

q = y − ystart

if (mode == INTRA):

val = state[BLOCK DATA][j][i][dc][c]

else if (mode == REF1ONLY):

val = pixel pred(ref1, 1, i, j, x, y, c) 15.8.7

val∗ = state[REF1 WT] + state[REF2 WT]

val = (val + 2state[REFS WT PRECISION]−1) À state[REFS WT PRECISION]

else if (mode == REF2ONLY):

val = pixel pred(ref2, 2, i, j, x, y, c) 15.8.7

val∗ = state[REF1 WT] + state[REF2 WT]

val = (val + 2state[REFS WT PRECISION]−1) À state[REFS WT PRECISION]

else if (mode == REF1AND2):

val1 = pixel pred(ref1, 1, i, j, x, y, c) 15.8.7

val1∗ = state[REF1 WT]

val2 = pixel pred(ref2, 2, i, j, x, y, c) 15.8.7

val2∗ = state[REF2 WT]

val = (val1 + val2 + 2state[REFS WT PRECISION]−1) À state[REFS WT PRECISION]

val∗ = W [q][p]

mc tmp[y][x]+ = val

Note: Note that if the two reference weights are 1 and state[REFS WT PRECISION] is 1, then reference

weighting is transparent and

. . .

val = pixel pred(ref1, 1, i, j, x, y, c)

val∗ = state[REF1 WT] + state[REF2 WT]

val = (val + 2state[REFS WT PRECISION]−1) À state[REFS WT PRECISION]

. . .

reduces to

15.8 Motion compensation 89

. . .

val = pixel pred(ref1, 1, i, j, x, y, c)

. . .

In this case, therefore, the normal reference weighting produces no additional dynamic range for internal

processing and 10 bit video can be motion compensated with 16 bit unsigned internal values.

In general, however, the worst case internal bit widths consist of the video bit depth plus the maximum of: 6

(the spatial matrix bit width) and the value of state[REFS WT PRECISION]. 6 bits should be sufficient for

most fading compensation applications, and so 16 bit internals will suffice for all practical motion compensation

scenarios for 8 and 10 bit video.

15.8.6 Spatial weighting matrix

This section specifies the function spatial wt(i, j) for deriving the 6-bit spatial weighting matrix that shall be

applied to the block with coordinates (i, j).

Note that other weights shall be applied to the prediction as a result of the weights applied to each reference.

The same weighting matrix shall be returned for all blocks within the interior of the picture component array.

Suitably modified weighting matrices shall be returned for blocks at the edges of the picture component data

array.

The function shall return a two-dimensional spatial weighting matrix. This shall apply a linear roll-off in both

horizontal and vertical directions.

The spatial matrix returned shall be the product of a horizontal and a vertical weighting matrix. It shall be

defined as follows:

spatial wt(i, j) : Ref

for y = 0 to state[YBLEN]− 1:

for x = 0 to state[XBLEN]− 1:

W [y][x] = h wt(i)[x] ∗ v wt(j)[y]

return W

The horizontal weighting function shall be defined as follows:

h wt(i) : Ref

if (state[XOFFSET]! = 1):

for x = 0 to 2 ∗ state[XOFFSET]− 1:

hwt[x] = 1 + (6 ∗ x + state[XOFFSET]− 1)//(2 ∗ state[XOFFSET]− 1)

hwt[x + state[XBSEP]] = 8− hwt[x]

else:

hwt[0] = 3

hwt[1] = 5

hwt[state[XBSEP]] = 5

hwt[state[XBSEP] + 1] = 3

for x = 2 ∗ state[XOFFSET] to state[XBSEP]− 1:

hwt[x] = 8

if (i == 0):

for x = 0 to 2 ∗ state[XOFFSET]− 1:

hwt[x] = 8

else if (i == state[BLOCKS X]− 1):

for x = 0 to 2 ∗ state[XOFFSET]− 1:

hwt[x + state[XBSEP]] = 8

return hwt

15.8 Motion compensation 90

The vertical weighting function shall be defined as follows:

v wt(j) : Ref

if (state[YOFFSET]! = 1):

for y = 0 to 2 ∗ state[YOFFSET]− 1:

vwt[y] = 1 + (6 ∗ y + state[YOFFSET]− 1)//(2 ∗ state[YOFFSET]− 1)

vwt[y + state[YBSEP]] = 8− vwt[y]

else:

vwt[0] = 3

vwt[1] = 5

vwt[state[YBSEP]] = 5

vwt[state[YBSEP] + 1] = 3

for y = 2 ∗ state[YOFFSET] to state[YBSEP]− 1:

vwt[y] = 8

if (j == 0):

for y = 0 to 2 ∗ state[YOFFSET]− 1:

vwt[y] = 8

else if (j == state[BLOCKS Y]− 1):

for y = 0 to 2 ∗ state[YOFFSET]− 1:

vwt[y + state[YBSEP]] = 8

return vwt

Note: The horizontal and vertical weighting arrays satisfy the perfect reconstruction property across block

overlaps by construction:

hwt[x + state[XBSEP]] = 8− hwt[x]

vwt[y + state[YBSEP]] = 8− vwt[y]

In addition, it can be shown they are always symmetric (except at picture edges), or equivalently the leading

edges have skew-symmetry about the half-way point:

hwt[state[XBLEN]− 1− x] = hwt[x]

vwt[state[YBLEN]− 1− y] = vwt[y]

The horizontal and vertical weighting matrix components for various block overlaps are shown in Table 15.8.

These encompass all the default values listed in Table 11.1 for both luma and chroma.

Overlap Offset Leading edge

(length-separation)

2 1 3,5

4 2 1,3,5,7

8 4 1,2,3,4,4,5,6,7

16 8 1,1,2,2,3,3,3,4,4,5,5,5,6,6,7,7

Table 15.8: Leading and trailing edge values for different block overlaps

15.8.7 Pixel prediction

This section defines the operation of the pixel pred(ref, ref num, i, j, x, y, c) process which shall be used

for forming the prediction for a pixel with coordinates (x, y) in component c, belonging to the block with

coordinates (i, j).

15.8 Motion compensation 91

The pixel prediction process shall consist of two stages. In the first stage, a motion vector to be applied to

pixel (x, y) shall be derived. For block motion, this shall be a block motionvector that shall apply to all pixels

in a block. For global motion the motion vector shall be computed from the global motion parameters and

may vary pixel-by-pixel.

In the second stage, the motion vector shall be used to derive coordinates in an reference picture.

pixel pred(ref, ref num, i, j, x, y, c) : Ref

if (state[BLOCK DATA][j][i][GMODE] == False):

mv = state[BLOCK DATA][j][i][VECTOR][ref num]

else:

mv = global mv(ref, ref num, x, y, c) 15.8.8

if (c! = Y):

mv = chroma mv scale(mv) 15.8.9

px = (x ¿ state[MV PRECISION]) + mv[0]

py = (y ¿ state[MV PRECISION]) + mv[1]

if (state[MV PRECISION] > 0):

return subpel predict(ref, c, px, py)) 15.8.10

else:

return ref [clip(py, 0, height(ref)− 1)][clip(px, 0, width(ref)− 1)]

15.8.8 Global motion vector field generation

This section specifies the operation of the global mv(ref, ref num, x, y, c) process for deriving a global motion

vector for a pixel at location (x, y), in a component of type c from a reference ref .

The function shall be defined as follows:

global mv(ref, ref num, x, y, c) : Ref

ez = state[GLOBAL PARAMS][ref num][ZRS EXP]

ep = state[GLOBAL PARAMS][ref num][PERSP EXP]

b = state[GLOBAL PARAMS][ref num][PAN TILT]

A = state[GLOBAL PARAMS][ref num][ZRS]

m = 2ep − (c[0] ∗ x + c[1] ∗ y)

v[0] = m ∗ ((A[0][0] ∗ x + A[0][1] ∗ y) + 2ez ∗ b[0])

v[1] = m ∗ ((A[1][0] ∗ x + A[1][1] ∗ y) + 2ez ∗ b[0])

v[0] = (v[0] + (1 ¿ (ez + ep))) À (ez + ep)

v[1] = (v[1] + (1 ¿ (ez + ep))) À (ez + ep)

return v

Note: Write x =

x

y

!
. Mathematically, we wish the global motion vector v to be defined by:

v =
Ax + b

1 + cT x

where: A is a matrix describing the degree of zoom, rotation or shear; b is a translation vector; and c is a

perspective vector which expresses the degree to which the global motion is not orthogonal to the axis of view.

In Dirac, this formula is adjusted in two ways in order to get an implementable result. Firstly, the perspective

element is adjusted to remove a division, changing the formula to:

v = (1− cT x)(Ax + b)

which is valid for small c. Secondly, the formula is re-cast in terms of integer arithmetic by giving the matrix

element an accuracy factor α and the perspective element an accuracy factor β:

v = (1− 2−βcT x)(2−αAx + b)

15.8 Motion compensation 92

where the parameters A,b, c are now integral. (No accuracy bits are required for the translation, since it must

be an integral number of sub-pixels.)

This reduces to

2α+βv = (2β − cT x)(Ax + 2αb)

and this formula is used for the computation of values.

15.8.9 Chroma subsampling

When motion compensating chroma components, motion vectors shall be scaled by the chroma mv scale()

function. This produces chroma vectors in units of state[MV PRECISION] with respect to the chroma samples,

as follows:

chroma mv scale(v) : Ref

sv[0] = v[0]//chroma h ratio() 10.5.1

sv[1] = v[1]//chroma v ratio() 10.5.1

return sv
.

Note: Recall that division in this specification rounds towards -infinity. This division can be achieved by a

bit-shift in C/C++ as chroma dimension ratios are 1 or 2.

15.8.10 Sub-pixel prediction

This section defines the operation of the subpel predict(ref, c, u, v) function for producing a sub-pixel accurate

value at location (u, v) from an upconverted picture reference component of type c (Y, C1 or C2).

Upconversion shall be defined by means of a half-pixel interpolated reference array upref . upref shall have

dimensions (2W − 1)x(2H − 1) where the original reference picture component array has dimensions WxH, as

per Section 15.8.11.

Motion vectors shall be permitted to extend beyond the edges of reference picture data, where values lying

outside shall be determined by edge extension.

If state[MV PRECISION] == 1, upconverted values shall be derived directly from the the half-pixel interpo-

lated array upref , which shall be calculated as per Section 15.8.11.

If state[MV PRECISION] == 2 or state[MV PRECISION] == 3, upconverted values shall be derived by

linear interpolation from the half-pixel interpolated array.

The sub-pixel prediction process shall be defined as follows:

15.8 Motion compensation 93

subpel predict(ref, c, u, v) : Ref

upref = interp2by2(ref, c) 15.8.11

hu = u À (state[MV PRECISION]− 1)

hv = v À (state[MV PRECISION]− 1)

ru = u− (hu ¿ (state[MV PRECISION]− 1))

rv = v − (hv ¿ (state[MV PRECISION]− 1))

w00 = (2state[MV PRECISION]−1 − rv) ∗ (2state[MV PRECISION]−1 − ru)

w01 = (2state[MV PRECISION]−1 − rv) ∗ ru

w10 = rv ∗ (2state[MV PRECISION]−1 − ru)

w11 = rv ∗ ru

xpos = clip(hu, 0, width(upref)− 1)

xpos1 = clip(hu + 1, 0, width(upref)− 1)

ypos = clip(hv, 0, height(upref)− 1)

ypos1 = clip(hv + 1, 0, height(upref)− 1)

val = w00 ∗ upref [ypos][xpos] + w01 ∗ upref [ypos][xpos1]+

w10 ∗ upref [ypos1][xpos] + w11 ∗ upref [ypos1][xpos1]

if (state[MV PRECISION] > 1):

return (val + 22∗state[MV PRECISION]−3) À (2 ∗ state[MV PRECISION]− 2)

else:

return val

Note: hu and hv represent the half-pixel part of the sub-pixel position (u, v).

ru and rv represent the remaining sub-pixel component of the position. ru and rv satisfy

0 ≤ ru, rv < 2state[MV PRECISION]−1

The four weights w00, w01, w10 and w11 sum to 22∗state[MV PRECISION]−2, and hence the upconverted value is

returned to the initial pixel ranges in the pseudocode above.

Note that the remainder values ru and rv, and hence the four weight values, only depend on the motion vectors.

This is because u and v have been computed by scaling the picture coordinates by 2state[MV PRECISION] and

adding the motion vector.

In particular constant linear interpolation weights are applied throughout a block when block motion is used.

Likewise, the necessity of clipping the ranges of xpos, ypos etc can be determined in advance for each block

by checking whether any corner of the reference block will fall outside of the reference picture area. In most

cases it will not and clipping will not be required for motion compensating most blocks.

For half-pixel motion vectors (state[MV PRECISION] is 1), the majority of the pseudocode is redundant,

and the return value val will merely be the value at position (u, v), clipped to the ranges of the upconverted

reference.

15.8.11 Half-pixel interpolation

This section defines the interp2by2(ref, c) process for generating an upconverted reference array upref repre-

senting a half-pixel interpolation of the reference array ref for component c (Y, C1, or C2).

upref shall be created in two stages. The first stage shall upconvert vertically. The second stage shall upconvert

horizontally.

upref shall have width 2 ∗width(ref)−1 and height 2 ∗height(ref)−1, so that all edge values shall be copied

from the original array and not interpolated.

The interpolation filter shall be the 8-tap symmetric filter with taps as defined in Figure 15.2.

Where coefficients used in the filtering process fall outside the bounds of the reference array, values shall be

15.9 Clipping 94

Tap t[0] t[1] t[2] t[3]

Value 21 -7 3 -1

Figure 15.2: Interpolation filter coefficients

supplied by edge extension.

The overall process shall be defined as follows:

interp2by2(ref, c) : Ref

if (c == Y):

bit depth = state[LUMA DEPTH]

else:

bit depth = state[CHROMA DEPTH]

for q = 0 to 2 ∗ height(ref)− 2:

if (q%2 == 0):

for p = 0 to width(ref)− 1:

ref2[q][p] = ref [q//2][p]

else:

for p = 0 to width(ref)− 1:

ref2[q][p] = 16

for i = 0 to 3:

ypos = (q − 1)//2− i

ref2[q][p]+ = t[i] ∗ ref [clip(ypos, 0, height(ref)− 1)][p]

ypos = (q + 1)//2 + i

ref2[q][p]+ = t[i] ∗ ref [clip(ypos, 0, height(ref)− 1)][p]

ref2[q][p] À= 5

ref2[q][p] = clip(ref2[q][p],−2bit depth−1, 2bit depth−1 − 1)

for q = 0 to 2 ∗ height(ref)− 2:

for p = 0 to 2 ∗ width(ref)− 2:

if (p%2 == 0):

upref [q][p] = ref2[q][p//2]

else:

upref [q][p] = 16

for i = 0 to 3:

xpos = (p− 1)//2− i

upref [q][p]+ = t[i] ∗ ref2[q][clip(xpos, 0, height(ref)− 1)]

xpos = (p + 1)//2 + i

upref [q][p]+ = t[i] ∗ ref2[q][clip(xpos, 0, height(ref)− 1)]

upref [q][p] À= 5

upref [q][p] = clip(upref [q][p],−2bit depth−1, 2bit depth−1 − 1)

Note: While this filter may appear to be variable separable, the integer rounding and clipping processes

prevent this being so. Note also that the clipping process for filtering terms implies that the upconversion uses

edge-extension at the array edges, consistent with the edge-extension used in motion-compensation itself.

15.9 Clipping

Picture data must be clipped prior to being output or being used as a reference:

15.10 Video output ranges 95

clip picture() : Ref

for each c in Y, C1, C2:

clip component(state[CURRENT PICTURE][c])

clip component(comp data, c) : Ref

if (c == Y):

bit depth = state[LUMA DEPTH]

else:

bit depth = state[CHROMA DEPTH]

for y = 0 to height(comp data)− 1:

for x = 0 to width(comp data)− 1:

data = clip(comp data[y][x],−2bit depth−1, 2bit depth−1 − 1)

Note: Note that clipping is incorporated into motion compensation, so that strictly speaking additional

clipping is only required for intra pictures.

15.10 Video output ranges

Video output data ranges are deemed to be non-negative, so that the offset and excursion values may be applied

by subsequent processing. Since decoded video data is bipolar, it must be suitably offset before output:

offset output data(picture data) : Ref

for each c in Y, C1, C2:

if (c == Y):

bit depth = state[LUMA DEPTH]

else:

bit depth = state[CHROMA DEPTH]

comp = picture data[c]

for y = 0 to height comp− 1:

for x = 0 to width comp− 1:

comp[y][x]+ = 2bit depth−1

96

A Data encodings

Data shall be encoded in the Dirac bitstream using four basic methods:

• fixed-length bit-wise codings,

• fixed-length byte-wise codings,

• variable-length codes,

• arithmetic encoding.

This annex defines how data shall be encoded in the Dirac stream and how sequences of bits shall be ex-

tracted as values of various types using the aforementioned fundamental data coding types. The extraction of

arithmetically encoded data shall require the use of the arithmetic decoding engine defined in Annex B.2.

A.1 Bit-packing and data input

This section defines the operation of the read bit(), read byte() and byte align() functions used for direct

access to the Dirac stream.

The stream data shall be accessed byte by byte, and a decoder is deemed to maintain a copy of the current

byte, state[CURRENT BYTE], and an index to the next bit (in the byte) to be read, state[NEXT BIT].

state[NEXT BIT] shall be an integer from 0 (least-significant bit) to 7 (most-significant bit). Bits within

bytes shall be accessed from the msb first to the lsb.

A.1.1 Reading a byte

The read byte() function shall perform the following steps:

1. Set state[NEXT BIT] = 7

2. Set state[CURRENT BYTE] to the next unread byte in the stream

A.1.2 Reading a bit

The read bit() function shall be defined as follows:

read bit() : Ref

bit = (state[CURRENT BYTE] À state[NEXT BIT])&1

state[NEXT BIT]− = 1

if (state[NEXT BIT] < 0):

state[NEXT BIT] = 7

read byte()

return bit

A.1.3 Byte alignment

The byte align() function shall be used to discard data in the current byte and begin data access at the next

byte, unless input is already at the beginning of a byte. It shall be defined as follows:

byte align() : Ref

if (state[NEXT BIT]! = 7):

read byte()

A.2 Parsing of fixed-length data 97

A.2 Parsing of fixed-length data

Dirac defines three fixed length data encodings as follows:

A.2.1 Boolean

The read bool() function shall return True if 1 is read from the stream and False otherwise. The readbool()

function shall be defined as follows:

read bool() : Ref

if (read bit() == 1):

return True

else:

return False

A.2.2 n-bit literal

An n-bit number in literal format shall be decoded by extracting n bits in order, using the read bit() function

(Section A.1.2) and placing the first bit in the leftmost position, the second bit in the next position and so on.

The resulting value shall be interpreted as an unsigned integer.

The read nbits() function shall be defined as follows:

read nbits(n) : Ref

val = 0

for i = 0 to n− 1:

val ¿= 1

val+ = read bit() A.1.2

return val

A.2.3 n-byte unsigned integer literal

The read uint lit() function shall be defined as follows:

read uint lit(n) : Ref

byte align() A.1.3

return read nbits(8 ∗ n) A.2.2

A.3 Variable-length codes

Variable-length codes shall be used in three ways in the Dirac stream:

1. The first use shall be for direct encoding of header values into the stream.

2. The second use shall be for entropy coding of motion data and coefficients, where arithmetic coding is

used.

3. The third use shall be for binarisation in the arithmetic encoding/decoding process so that integer values

may be coded and decoded using a binary arithmetic coding engine. This is defined in Annex A.4.

When used for coding motion data and coefficients, VLCs shall be employed within a data block of known

length. It is possible to gain additional compression by early termination: maintaining a count of remaining

bits, and returning default values when this length is exceeded. This shall be achieved by use of the read bitb(),

read boolb(), read uintb() and read sintb() for reading values from data blocks.

A.3 Variable-length codes 98

Note: A similar early termination facility is a used for arithmetic decoding.

A.3.1 Data input for bounded block operation

This section specifies the operation of the read bitb() process for reading bits from a block of known size, and

the flushinputb() process for discarding the remainder of a block of data.

These processes shall use state[BITS LEFT] to determine the number of bits left to the end of the block.

The readbitb() function shall be defined as follows:

read bitb() : Ref

if (state[BITS LEFT] == 0):

return 1

else:

state[BITS LEFT]− = 1

return read bit()

When all bits in the block have been read, then read bitb() shall return 1 by default.

It is possible that not all data in a block is exhausted after a sequence of read operations. At the end of a

sequence of read operations, the decoder shall flush the block.

The flush inputb() process shall be defined as follows:

flush inputb() : Ref

while (state[BITS LEFT] > 0):

read bit()

state[BITS LEFT]− = 1

A.3.2 Unsigned interleaved exp-Golomb codes

This section defines the unsigned interleaved exp-Golomb data format and the operation of the read uint()

and the read uintb() functions.

Unsigned interleaved exp-Golomb data shall be decoded to produce unsigned integer values.The format shall

consist of two interleaved parts, and each code shall be an odd number, 2K + 1 bits in length.

The K + 1 bits in the even positions (counting from zero) shall be the “follow” bits, and the K bits in the

odd positions shall be the “data” bits bi that are used to construct the decoded value itself. A follow bit value

of 0 shall indicate a subsequent data bit, whereas a follow bit value of 1 shall terminate the code, a typical

sequence being

0 xK−1 0 xK−2 . . . 0 x0 1

The data bits xK−1, xK−2, . . . , x0 shall form the binary representation of the first K bits of the (K + 1)-bit

number N + 1, where N is the number to be decoded, i.e.:

N + 1 = 1xK−1xK−2 . . . x0 (base 2) = 2K +

K−1X
i=0

2i ∗ xi

Table A.1 shows encodings of the values 0–9.

Although apparently complex, the interleaving ensures that the code has a very simple decoding loop.

The read uint() function shall return an unsigned integer value and shall be defined as follows:

A.3 Variable-length codes 99

Bit sequence Decoded value

1 0

0 0 1 1

0 1 1 2

0 0 0 0 1 3

0 0 0 1 1 4

0 1 0 0 1 5

0 1 0 1 1 6

0 0 0 0 0 0 1 7

0 0 0 0 0 1 1 8

0 0 0 1 0 0 1 9

Table A.1: Example conversions from unsigned interleaved exp-Golomb-coded values to unsigned integers

read uint() : Ref

value = 1

while (read bit() == 0):

value ¿= 1

if (read bit() == 1):

value+ = 1

value− = 1

return value

Note: Conventional exp-Golomb coding places all follow bits at the beginning as a prefix. This is easier to

read, but requires that a count of the prefix length be maintained. Values can only be decoded in two loops

– the prefix followed by the data bits. Interleaved exp-Golomb coding allows values to be decoded in a single

loop, without the need for a length count.

The read uintb() function is identical to read uint() except that the block-bounded read operation is employed,

and shall be defined as follows:

read uintb() : Ref

value = 1

while (read bitb() == 0):

value ¿= 1

if (read bitb() == 1):

value+ = 1

value− = 1

return value

Note: When state[BITS LEFT] == 0, all subsequent values read by read uintb() will be 0.

A.3.3 Signed interleaved exp-Golomb

This section defines the signed interleaved exp-Golomb data format and the operation of the read sint() and

read sintb() functions.

The code for the signed interleaved exp-Golomb data format consists of the unsigned interleaved exp-Golomb

code for the magnitude, followed by a sign bit for non-zero values, as shown in the table below:

A.4 Parsing of arithmetic-coded data 100

Bit sequence Decoded value

0 0 0 1 1 1 -4

0 0 0 0 1 1 -3

0 1 1 1 -2

0 0 1 1 -1

1 0

0 0 1 0 1

0 1 1 0 2

0 0 0 0 1 0 3

0 0 0 1 1 0 4

The read sint() function shall be defined as follows.

read sint() : Ref

value = read uint()

if (value! = 0):

if (read bit() == 1):

value = −value

return value

The read sintb() function is identical to read sint() except that the block-bounded read operation is employed,

and shall be defined as follows:

read sintb() : Ref

value = read uintb()

if (value! = 0):

if (read bitb() == 1):

value = −value

return value

Note: When state[BITS LEFT] == 0, all subsequent values read by read sintb() will be 0.

A.4 Parsing of arithmetic-coded data

This section defines the operations for reading arithmetic-coded data. These operations shall make use of the

elementary arithmetic coding functions defined by the arithmetic decoding engine defined in Annex B.2.

Arithmetically-coded data is present in the Dirac stream in data blocks which shall consist of a whole number

of bytes and which shall be byte aligned. Where arithmetic coding is used, each such block shall be preceded

by data which includes a length code length, which shall be equal to the length in bytes of the data block.

The function initialise arithmetic decoding(length) (Section B.2.2) shall then initialises the arithmetic de-

coder. Once the arithmetic decoder is initialised, boolean and integer values may be extracted.

After all values in a particular arithmetic coded block have been parsed, any remaining data shall be flushed

using the flush inputb() process (Section A.3.1).

A.4.1 Context probabilities

Values shall be extracted by using binary context probabilities. A context is a decoding state, representing

the set of all data decoded so far.

A context probability shall be a 16 bit unsigned integer value representing the probability of a bit being 0 in

a given context, where zero probability is represented by 0x0, and equal likelihood by 0x8000. The process for

initializing and updating context probabilities shall be as defined in annex B.2.2 and B.2.6.

A.4 Parsing of arithmetic-coded data 101

Note: Probability 1, or certainty, would be represented by the 17-bit number 0x10000. This value, and

probability 0 (0x0), can never be attained due to the operation of the probability update process (annex

B.2.6).

Different context probabilities shall be employed for extracting binary values, based on the values of previously

decoded data. Each context probability shall be updated by the arithmetic decoding engine to track statistics

after it has been used to extract a value.

The set of contexts probabilities shall be defined by state[CONTEXT PROBS], and an individual context

shall be accessed via a keyword label i.e. state[CONTEXT PROBS] is a map and the context value shall be

state[CONTEXT PROBS][l] for a label l.

The array of context probability labels to be used in arithmetic decoding shall be passed to the arithmetic

decoding engine at initialization (annex B.2.2).

A.4.2 Arithmetic decoding of boolean values

Given a context probability lable l, the arithmetic decoding engine shall support a function read boola(l),

specified in Section B.2.4, which shall returna boolean value.

A.4.3 Arithmetic decoding of integer values

This section defines the operation of the read sinta(context prob set) and read uinta(context prob set) func-

tions for extracting integer values from a block of arithmetically coded data.

A.4.3.1 Binarisation and contexts

Signed and unsigned integer values shall be coded by first converting to binary form by using interleaved

exp-Golomb binarisation as per Section A.3. The read sinta() and read uinta() processes shall be identical

to the read sint() and read uint() processes, except that instances of read bit() shall be replaced by instances

of read boola() (Section B.2.4) using a suitable context for each bit.

read sinta() and read uinta() shall be provided with a map context prob set, which shall consist of three

parts:

1. an array of follow context indices, context prob set[FOLLOW]

2. a single data context index, context prob set[DATA]

3. a sign context index, context prob set[SIGN] (ignored for unsigned integer decoding)

Each follow context shall be used for decoding the corresponding follow bit, with the last follow context being

used for all subsequent follow bits also (if any).

The follow context selection function follow context() shall be defined as follows:

follow context(index, context prob set) : Ref

pos = min(index, length(context prob set[FOLLOW])− 1)

ctx label = context prob set[FOLLOW][pos]

return state[CONTEXT PROBS][ctx label]

A.4.3.2 Unsigned integer decoding

The read uinta() function shall be defined as follows:

A.4 Parsing of arithmetic-coded data 102

read uinta(context prob set) : Ref

value = 1

index = 0

while (read boola(follow context(index, context prob set)) == False): A.4.3.1

value ¿= 1

if (read boola(state[CONTEXT PROBS][context prob set[DATA]]) == True):

value+ = 1

index+ = 1

value− = 1

return value

A.4.3.3 Signed integer decoding

read sinta() decodes first the magnitude then the sign, as necessary:

read sinta(context prob set) : Ref

value = read uinta(context prob set)

if (value! = 0):

if (read boola(state[CONTEXT PROBS][context prob set[SIGN])]) == True):

value = −value

return value

103

B Arithmetic Coding

This annex has three parts:

1. a description of the principles of arithmetic coding,

2. a specification of the arithmetic decoding engine used in Dirac, and

3. a description of a compatible arithmetic encoder.

B.1 Arithmetic coding principles (Informative)

This section provides an introduction to the principles underlying arithmetic coding. It briefly describes binary

arithmetic coding, that is the coding of binary symbols, which is used in Dirac.

Arithmetic coding is an extremely powerful form of entropy coding, which can closely approximate the Shannon

information limit for given data. Arithmetic encoding consists of a state machine that is fed with a sequence of

symbols together with an estimate of each symbols probability. For each input symbol the arithmetic coding

engine updates its state and output a number of coded bits. The number of output bits for each input symbol

depends on the internal state and on the current probabilities the symbols that are coded, and can range from

zero to many bits.

The variable number of coded bits output for each input symbol complicates the implementation but is essential

to the optimal nature of arithmetic coding. Consider a binary symbol b, with p(b = False) = p0 and p(b =

True) = 1− p0. The entropy of b is the expected number of bits required to encode b, and is equal to

e(p0) = p0 log2(1/p0) + (1− p0) log2(1/(1− p0))

If e(p0) is plotted against p0, it can be seen that if p0 is not equal to 0.5 exactly, e(p0) < 1. This means that an

optimal binary entropy encoder that operates symbol by symbol, cannot produce an output for every symbol.

B.1.1 Interval division and scaling

The fundamental idea of arithmetic coding is interval division and scaling. An arithmetic code can be thought

of as a single number lying in an interval determined by the sequence of values being coded. For simplicity,

this discussion describes binary arithmetic coding, but larger symbol alphabets can be treated in an analogous

manner.

Let us begin with the interval [0, 1), and suppose that we know (or have some estimate of) the probability of

False, p0. Conceptually we divide the interval into the intervals [0, p0) and [p0, 1). Suppose we code False as

the first symbol. In this case the interval is changed to [0, p0). If we code a 1, then the interval is changed to

[p0, 1). After coding a number of symbols we arrive at an interval [low, high). To code the next symbol we

partition this interval into [low, low + p0(high− low)) and [low + p0(high− low), b), and if the symbol is False

we choose the first interval, otherwise the second.

For any integer N , this process clearly partitions the interval [0, 1) into a set of disjoint intervals that correspond

to all the input sequences of N bits. Identifying such a bit sequence is equivalent to choosing a value in the

corresponding interval, and for an interval width w that in general requires

dlog2(1/w)e
bits. With static probabilities, on average,

w = pNp0
0 (1− p0)

N(1−p0)

resulting in

dNe(p0)e
being used, demonstrating the near-optimality of arithmetic coding. Moreover, it is clearly possible to create

an adaptive arithmetic code by changing the estimate of p0 based on previously coded data.

B.2 Arithmetic decoding engine 104

B.1.2 Finite precision arithmetic

As it stands, the procedure outlined in the previous section has a number of drawbacks for practical application.

Firstly, it requires unlimited precision to scale the interval, which is not available in real hardware or software.

Secondly, it only produces an output when all values have been coded. These problems are addressed by

renormalisation and progressive output: periodically rescaling the interval, and outputting the most significant

bits of low and high whenever they agree.

For example, if we know that

low = b0xyz...

high = b0pqr...

then we can output 0, since this must prefix any value lying in the interval, and shift low and high to get

low = bxyz... and high = bpqr.... This has the effect of doubling the interval from 0 (x 7→ 2x). Likewise if

low = b1xyz...

high = b1pqr...

we can output 1 and shift to get low = bxyz... and high = bpqr... again: this is equivalent to doubling the

interval from 1 (x 7→ 2x− 1).

One problem remains: suppose the interval resolutely sits on the fence, straddling
1

2
whilst getting smaller

and smaller, with the most significant bits of low and high staying as 0 and 1 respectively. In this case, when

the straddle is finally resolved, low and high will both be of the form b10000...xyz or b01111...pqr.

The resolution strategy is to again rescale low and high, but this time double from
1

2
(i.e. x 7→ 2x− 1

2
), and

keep a count of the number k of times this is done, as this is the number of carry bits that are required. When

the straddle is resolved as 1, then 1 followed by k zero bits is output, otherwise 0 followed by k 1s is output.

This ensures that the output exactly represents the small straddling interval.

A decoder can determine a symbol as soon as it has sufficient bits to distinguish whether a value lies in one

interval or another. If constraints are placed on the size of the smallest interval before renormalisation (for

example, by renormalising often enough and by having a fixed smallest allowable probability), then this can

be accomplished within a fixed word width.

B.1.3 Symbol probability estimation

B.2 Arithmetic decoding engine

This section is a normative specification of the operation of the arithmetic decoding engine and the processes

for using it to extract binary values from coded streams.

The arithmetic decoding engine shall consist of two elements:

1. a collection of state variables representing the state of the arithmetic decoder (Section B.2.2)

2. a function for extracting binary values from the decoder and updating the decoder state (Section B.2.4)

B.2.1 State and contexts

The arithmetic decoder state shall consist of the following decoder state variables:

• state[LOW], an integer representing the beginning of the current coding interval.

• state[RANGE], an integer representing the size of the current coding interval.

• state[CODE], an integer within the interval from state[LOW] to state[LOW] + state[RANGE] − 1,

determined from the encoded bitstream.

B.2 Arithmetic decoding engine 105

• state[BITS LEFT], a decrementing count of the number of bits yet to be read in

• state[CONTEXT PROBS], a map of all the contexts used in the Dirac decoder.

A context context shal be a 16 bit unsigned interger value which encapsulates the probability of zero symbol

in the stream, represented as such that

0 < context[prob0] ≤ 0xFFFF

Contexts shall be accessed by decoding functions via a context label passed to the function.

B.2.2 Initialisation

At the beginning of the decoding of any data unit, the arithmetic decoding state shall be initialised as follows:

initialise arithmetic decoding(ctx labels) : Ref

state[LOW] = 0x0

state[RANGE] = 0xFFFF

state[CODE] = 0x0

for i = 0 to 15:

state[CODE] <<= 1

state[CODE]+ = read bitb()

init context probs(ctx labels)

The init context probs() process shall be defined as follows:

init context probs(ctx labels) : Ref

for i = 0 to length(ctx labels)− 1:

state[CONTEXT PROBS][ctx labels[i]] = 0x8000

Note: The value 0x8000 represents 1/2 or equal likelihood for binary values.

B.2.3 Data input

The arithmetic decoding process shall access data in a contiguous block of bytes whose size is equal to

state[BITS LEFT], this value having been set prior to decoding the block. The bits in this block shall

be sufficient to allow for the decoding of all coefficients. However, the specification of arithmetic decoding

operations in this section may occasionally cause further bits to be read, even though they are not required

for determining decoded values. For this reason the bounded-block read function read bitb() (Section A.3.1)

shall be used for data access.

Since the length of arithmetically coded data elements is given in bytes within the Dirac stream, there may

be bits left unread when all values have been extracted. These shall be flushed as desribed in Section A.3.1.

Since arithmetically coded blocks are byte-aligned and a whole number of bytes, this aligns data input with

the beginning of the byte after the arithmetically coded data i.e. at the end of the data chunk. flush inputb()

shall always be called at the end of decoding an arithmetically coded data element.

B.2.4 Decoding boolean values

The arithmetic decoding engine is a multi-context, adaptive binary arithmetic decoder, performing binary

renormalisation and producing binary outputs. For each bit decoded, the semantics of the relevant calling

decoder function shall determine which contexts are passed to the arithmetic decoding operations.

This section defines the operation of the read boola() function for extracting a boolean value from the Dirac

stream. The function shall be defined as follows:

B.2 Arithmetic decoding engine 106

read boola(context label) : Ref

prob zero = state[CONTEXT PROBS][context label]

count = state[CODE]− state[LOW]

range times prob = (state[RANGE] ∗ prob zero) À 16

if (count >= range times prob):

value = True

state[LOW]+ = range times prob

state[RANGE]− = range time prob

else:

value = False

state[RANGE] = range times prob

update context(state[CONTEXT PROBS][context index], value) B.2.6

while (state[RANGE] <= 0x4000):

renormalise() B.2.5

return value

Note: The function scales the probability of the symbol 0 or False from the decoding context so that if this

probability were 1, then the interval would equal that between state[LOW] and

high = state[LOW] + state[RANGE]− 1

and count is set to the normalised cut-off between 0/False and 1/True within this range.

B.2.5 Renormalisation

Renormalisation shall be applied to stop the arithmetic decoding engine from losing accuracy. Renormalisation

shall be applied while the range is less than or equal to a quarter of the total available 16-bit range (0x4000).

Renormalisation shall double the interval and read a bit into the codeword. The renormalise() function shall

be defined as follows:

renormalise() : Ref

if ((state[LOW] + state[RANGE]− 1) ∧ state[LOW] >= 0x8000):

state[CODE]∧ = 0x4000

state[LOW]∧ = 0x4000

state[LOW] <<= 1

state[RANGE] <<= 1

state[LOW]& = 0xFFFF

state[CODE] <<= 1

state[CODE]+ = read bitb()

state[CODE]& = 0xFFFF

Note: For convenience let low = state[LOW] and high = state[LOW] + state[RANGE]− 1 represent the

upper and lower bounds of the interval. If the range is <= 0x4000 then one of three possibilities must obtain:

1. the msbs of low and high are both 0

2. the msbs of low and high are both 1

3. low = b01..., high = b10...., and the interval straddles the half-way point 0x8000.

The renormalisation process has the effect that: in case 1, the interval [low, high] is doubled from 0 (i.e.

x 7→ 2 ∗ x); in case 2 it is doubled from 1 (i.e. x 7→ 2 ∗ x − 1); and in case 3 it is doubled from 1/2 (i.e.

x 7→ 2x− 0.5).

B.2 Arithmetic decoding engine 107

B.2.6 Updating contexts

Context probabilities shall be updated according to a probability look-up table state[PROB LUT], which

supplies a value for decrementing or incrementing the probability of zero based on the first 8 bits of its current

value, according to Table B.1.

The update context() process shall be defined as follows:

update context(ctx prob, value) : Ref

if (value == True):

ctx prob− = state[PROB LUT][ctx[prob0] À 8] Table B.1

else:

ctx prob+ = state[PROB LUT][255− (ctx[prob0] À 8)] Table B.1

The lookup table used for updating context probabilities shall be as defined in Table B.1. below. The lookup

table entries are arranged in raster scan order with rows of thirteen entries. The entry corresponding to index

zero is in the top left hand corner, the index increments by one from left to right and by thirteen from top to

bottom, the entry corresponding to index 255 is on the right hand side of the last row.

state[PROB LUT][] (indexes 0 to 255)

0, 2, 5, 8, 11, 15, 20, 24,

29, 35, 41, 47, 53, 60, 67, 74,

82, 89, 97, 106, 114, 123, 132, 141,

150, 160, 170, 180, 190, 201, 211, 222,

233, 244, 256, 267, 279, 291, 303, 315,

327, 340, 353, 366, 379, 392, 405, 419,

433, 447, 461, 475, 489, 504, 518, 533,

548, 563, 578, 593, 609, 624, 640, 656,

672, 688, 705, 721, 738, 754, 771, 788,

805, 822, 840, 857, 875, 892, 910, 928,

946, 964, 983, 1001, 1020, 1038, 1057, 1076,

1095, 1114, 1133, 1153, 1172, 1192, 1211, 1231,

1251, 1271, 1291, 1311, 1332, 1352, 1373, 1393,

1414, 1435, 1456, 1477, 1498, 1520, 1541, 1562,

1584, 1606, 1628, 1649, 1671, 1694, 1716, 1738,

1760, 1783, 1806, 1828, 1851, 1874, 1897, 1920,

1935, 1942, 1949, 1955, 1961, 1968, 1974, 1980,

1985, 1991, 1996, 2001, 2006, 2011, 2016, 2021,

2025, 2029, 2033, 2037, 2040, 2044, 2047, 2050,

2053, 2056, 2058, 2061, 2063, 2065, 2066, 2068,

2069, 2070, 2071, 2072, 2072, 2072, 2072, 2072,

2072, 2071, 2070, 2069, 2068, 2066, 2065, 2063,

2060, 2058, 2055, 2052, 2049, 2045, 2042, 2038,

2033, 2029, 2024, 2019, 2013, 2008, 2002, 1996,

1989, 1982, 1975, 1968, 1960, 1952, 1943, 1934,

1925, 1916, 1906, 1896, 1885, 1874, 1863, 1851,

1839, 1827, 1814, 1800, 1786, 1772, 1757, 1742,

1727, 1710, 1694, 1676, 1659, 1640, 1622, 1602,

1582, 1561, 1540, 1518, 1495, 1471, 1447, 1422,

1396, 1369, 1341, 1312, 1282, 1251, 1219, 1186,

1151, 1114, 1077, 1037, 995, 952, 906, 857,

805, 750, 690, 625, 553, 471, 376, 255

Table B.1: Look-up table for context probability adaptation

B.2 Arithmetic decoding engine 108

B.2.7 Efficient implementation (Informative)

The decoding operations defined in the preceding sections correspond closely to the descriptions of arithmetic

coding principles contained in the academic literature. More efficient implementations are certainly possible,

both for hardware and software. This section describes some simple techniques.

B.2.7.1 Change of variables

There is in fact no need for the decoder to keep track of both state[LOW] and state[CODE], since the test is

made against the difference of these values, i.e. be defined as:

state[CODE MINUS LOW] = state[CODE]− state[LOW]

So only this difference variable need be tracked. Since state[LOW] is initialised to zero, state[CODE MINUS LOW]

is initialised just like state[CODE]. The read boola then is re-written as:

read boola(context label) : Ref

prob zero = state[CONTEXT PROBS][context label]

range times prob = (state[RANGE] ∗ prob zero) À 16

if (state[CODE MINUS LOW] >= range times prob):

value = True

state[CODE MINUS LOW]− = range times prob

state[RANGE]− = range time prob

else:

value = False

state[RANGE] = range times prob

update context(state[CONTEXT PROBS][context index], value) B.2.6

while (state[RANGE] <= 0x4000):

renormalise() B.2.5

return value

The renormalise() function is very greatly simplified, since all the masking and bit-twiddling is eliminated to

leave:

renormalise() : Ref

state[CODE MINUS LOW] <<= 1

state[RANGE] <<= 1

state[CODE MINUS LOW]+ = read bitb()

B.2.7.2 Bytewise operation

Accessing data bit by bit is also inefficient, so it is useful to look ahead and read in bytes into state[CODE MINUS LOW]

or state[CODE] in advance. So, for example, state[CODE MINUS LOW] could be initialised to the first 4

bytes of the bitstream and state[RANGE] initialised to 0xFFFF0000, and all calulations shifted up by 16 bits.

Then read boola can be re-written as:

B.3 Arithmetic encoding (Informative) 109

read boola(context label) : Ref

prob zero = state[CONTEXT PROBS][context label]

range times prob = (state[RANGE] À 16 ∗ prob zero)&0xFFFF0000

if (state[CODE MINUS LOW] >= range times prob):

value = True

state[CODE MINUS LOW]− = range times prob

state[RANGE]− = range time prob

else:

value = False

state[RANGE] = range times prob

update context(state[CONTEXT PROBS][context index], value)

while (state[RANGE] <= 0x40000000):

renormalise()

return value

and the renormalisation loop uses a counter, starting at 16, to input bits in 2-byte chunks:

renormalise() : Ref

state[CODE MINUS LOW] <<= 1

state[RANGE] <<= 1

state[COUNTER]− = 1

if (state[COUNTER] == 0):

state[CODE MINUS LOW]+ = read uint lit(2)

state[COUNTER] = 16

B.2.7.3 Look-up table

In software it makes sense to use a modified probability LUT containing 512 elements, in which each even

element is the negative increment to prob zero if 0 is coded, and each odd element is the positive increment to

prob zero is 1 is coded. This means that access to the LUT will always be in a very local area whatever value

is coded, whereas the basic structure will require either position p or 255− p to be accessed depending on the

value.

B.3 Arithmetic encoding (Informative)

This document only normatively defines the decoding of arithmetic coded data. However whilst it is clearly

vital that an encoding process matches the decoding process, it is not entirely straightforward to derive an

implementation of the encoder by only looking only at the decoder specification. Therefore this informa-

tive section describes a possible implementation for an arithmetic encoder that will produce output that is

decodeable by the Dirac arithmetic decoder. This section is best read in conjunction with Annex B.2.

B.3.1 Encoder variables

An arithmetic encoder requires the following unsigned integer variables, or some mathematically equivalent

set:

• low, a value indicating the bottom of the encoding interval

• range, a value indicating the width of the encoding interval

• carry, a value tracking the number of unresolved “straddle” conditions (described below)

• a set of 16-bit probability context probabilitiess, as described in Annex A.4

B.3 Arithmetic encoding (Informative) 110

The process for updating context probabilities, used for coding values, is described in Annex B.2.6

A Dirac binary arithmetic encoder implementation codes a set of data in three stages:

1. initialisation,

2. processing of all values, and

3. flushing.

B.3.2 Initialisation

Initialisation of the arithmetic encoder is very simple – the internal variables are set as:

low = 0x0

range = 0xFFFF

carry = 0

With 16 bit accuracy, 0xFFFF corresponds to an interval width value of (almost) 1. All context probabilities

are initialised to probability 1/2 (0x8000).

B.3.3 Encoding binary values

The encoding process for a binary value must precisely mirror that for the decoding process (Annex B.2.4). In

particular the interval variables low and range must be updated in the same way.

Coding a boolean value consists of three sub-stages (in order):

1. scaling the interval [low, low + range),

2. updating contexts, and

3. renormalising and outputting data.

B.3.3.1 Scaling the interval

The integer interval [low, low + range) represents the real interval

[l, h) = [low/216, (low + range)/216)

In a given context with label label, the probability of zero can be extracted as

prob zero = state[CONTEXT PROBS][label]

If 0 is to be encoded, the real interval [l, h) should be rescaled so that l is unchanged and the width r = h− l =

range/216 is scaled to r ∗ p0 where p0 = prob zero/216.

This operation is approximated by setting

range = (range ∗ prob zero) À 16

If 1 is to be encoded, [l, h) should be rescaled so that h is unchanged and r is scaled to (1 − p0) ∗ r. This

operation is approximated by setting

low + = (range ∗ prob zero) À 16

range − = (range ∗ prob zero) À 16

B.3.3.2 Updating contexts

Contexts are updated in exactly the same way as the decoder (Annex B.2.6).

B.3 Arithmetic encoding (Informative) 111

B.3.3.3 Renormalisation and output

Renormalisation must cause low and range to be modified exactly as in the decoder (Annex B.2.5). In addition,

during renormalisation bits are output when low and low + range agree in their msbs, taking into account

carries accumulated when a straddle condition is accumulated.

In pseudocode, this is as follows:

. . .

while (range <= 0x4000):

if ((low + range− 1) ∧ low >= 0x8000):

low∧ = 0x4000

carry+ = 1

else:

write bit(low&0x8000)

while (carry > 0):

write bit(!low&0x8000)

carry− = 1

low <<= 1

range <<= 1

low& = 0xFFFF

B.3.3.4 Flushing the encoder

After encoding, there may still be insufficient bits for a decoder to determine the final few encoded symbols,

partly because further renormalisation is required – for example, msbs may agree but the range may still be

larger than 0x4000) – and partly because there may be unresolved carries.

A four-stage process will adequately flush the encoder:

1. output remaining resolved msbs,

2. resolve remaining straddle conditions,

3. flush carry bits, and

4. byte align the output with padding bits.

The remaining msbs are output as follows:

. . .

while ((low + range− 1) ∧ low < 0x8000):

write bit(low&0x8000! = 0x0)

while (carry > 0):

write bit((low&0x8000) == 0x0)

carry− = 1

low <<= 1

low& = 0xFFFF

range <<= 1

Remaining straddles can then be resolved by:

. . .

while ((low&0x4000) and (((low + range− 1)&0x4000)! = 0x0)):

carry+ = 1

low∧ = 0x4000

low <<= 1

range <<= 1

low& = 0xFFFF

B.4 Efficient implementation 112

Carry bits can be discharged by picking a resolution of the final straddles:

. . .

write bit(low&0x4000! = 0x0)

for c = 0 to carry:

write bit((low&0x4000) == 0x0)

Finally, 0-7 padding bits are added to the encoded output to make a whole number of bytes. These are not

necessary for decoding, but for stream compliance.

B.4 Efficient implementation

Some similar techniques to those described in section B.2.7 can be used in the encoder to speed up operation.

B.4.0.5 Bytewise operation

It is not necessary to output bits one by one. Instead, low may be allowed to accumulate bits at the lower end

and output them when a byte has accumulated. If the last bit determined was a 1, this 1 must be carried to

the previous byte, so renormalisation becomes:

. . .

while (range <= 0x4000):

low ¿= 1

range ¿= 1

counter− = 1

if (counter == 0):

if (low <= 1 ¿ 24 and low + range > 1 ¿ 24):

carry+ = 1

else:

if (low < 1 ¿ 24):

while (carry):

data[pos] = 0xFF

carry− = 1

pos+ = 1

else:

data[pos− 1]+ = 1

while (carry):

data[pos] = 0x00

carry− = 1

pos+ = 1

data[pos](low À 16

pos+ = 1

low& = 0xFFFF

counter = 8

B.4.0.6 Overlap and add

Renormalisation can be simplified still further by observing that carries occur if and only if the top byte of low

becomes 0xFF. In this case a carried 1 would propagate up multiple bytes, turning 0xFFs into 0x00s. So it is

possible to store the top two bytes of low (i.e. bit 24 containing the carry bit and the next byte) and do an

overlap and add at the end to correctly propagate values back to the beginning. I.e. renormalisation becomes:

B.4 Efficient implementation 113

. . .

while (range <= 0x4000):

low ¿= 1

range ¿= 1

counter− = 1

if (counter == 0):

low list[pos] = low À 16

pos+ = 1

counter = 8

low& = 0xFFFF

At the end of coding all values, a flush function will complete low list for remaining values and perform the

overlap and add:

. . .

low+ = 1

low ¿= counter

low list[pos] = (low À 16)&0xFFFF

pos+ = 1

low list[pos] = (low À 8)&0xFFFF

pos+ = 1

data[pos− 1] = low list[pos− 1]&0xFF

data[pos− 2] = low list[pos− 2]&0xFF

for i = 0 to pos− 3:

low list[pos− 3− i]+ = low list[pos− 2− i] À 8

data[pos− 3− i] = low list[pos− 3− i]&0xFF

114

C Predefined video formats

This annex defines the default values of video parameters that are determined by the value of the base video

format. These defaults reduce overhead by allowing a large number of parameters to be set without explicit

signaling.

The collection of default values for each value of the base video format constitutes a map, which shall be

returned by the set source defaults(base video format) function and used as a basis for defining the source

video format in the sequence header as per Section 10.3.1.

All source parameters for any of the predefined video formats may be overridden as required in the sequence

header.

115
V

id
e
o

F
o
rm

a
ts

B
a
se

v
id

e
o

fo
rm

a
t

in
d
e
x

v
a
lu

e
0

1
2

3
4

5
6

7
8

N
a
m

e
(i

n
fo

rm
a
ti

v
e
)

C
u
st

o
m

Q
S
IF

5
2
5

Q
C

IF
S
IF

5
2
5

C
IF

4
S
IF

5
2
5

4
C

IF
S
D

4
8
0

-6
0
I

S
D

5
7
6

-5
0
I

F
ra

m
e

W
id

th
:

6
4
0

1
7
6

1
7
6

3
5
2

3
5
2

7
0
4

7
0
4

7
2
0

7
2
0

F
ra

m
e

H
e
ig

h
t:

4
8
0

1
2
0

1
4
4

2
4
0

2
8
8

4
8
0

5
7
6

4
8
0

5
7
6

C
h
ro

m
a

S
a
m

p
li
n
g

F
o
rm

a
t:

4
:2

:0
4
:2

:0
4
:2

:0
4
:2

:0
4
:2

:0
4
:2

:0
4
:2

:0
4
:2

:2
4
:2

:2

S
o
u
rc

e
S
a
m

p
li
n
g
:

0
0

0
0

0
0

0
1

1

T
o
p

F
ie

ld
F
ir

st
:

F
a
ls

e
F
a
ls

e
T
ru

e
F
a
ls

e
T
ru

e
F
a
ls

e
T
ru

e
F
a
ls

e
T
ru

e

F
ra

m
e

R
a
te

In
d
e
x

1
9

1
0

9
1
0

9
1
0

4
3

N
u
m

e
ra

to
r

2
4
0
0
0

1
5
0
0
0

2
5

1
5
0
0
0

2
5

1
5
0
0
0

2
5

3
0
0
0
0

2
5

D
e
n
o
m

in
a
to

r
1
0
0
1

1
0
0
1

2
1
0
0
1

2
1
0
0
1

2
1
0
0
1

1

A
sp

e
c
t

R
a
ti

o
In

d
e
x

1
2

3
2

3
2

3
2

3

N
u
m

e
ra

to
r

1
1
0

1
2

1
0

1
2

1
0

1
2

1
0

1
2

D
e
n
o
m

in
a
to

r
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

C
le

a
n

W
id

th
:

6
4
0

1
7
6

1
7
6

3
5
2

3
5
2

7
0
4

7
0
4

7
0
4

7
0
4

C
le

a
n

H
e
ig

h
t:

4
8
0

1
2
0

1
4
4

2
4
0

2
8
8

4
8
0

5
7
6

4
8
0

5
7
6

C
le

a
n

L
e
ft

O
ff
se

t
0

0
0

0
0

0
0

8
8

C
le

a
n

T
o
p

O
ff
se

t
0

0
0

0
0

0
0

0
0

S
ig

n
a
l
R

a
n
g
e

In
d
e
x

1
1

1
1

1
1

1
3

3

L
u
m

a
O

ff
se

t
0

0
0

0
0

0
0

6
4

6
4

L
u
m

a
E
x
c
u
rs

io
n

2
5
5

2
5
5

2
5
5

2
5
5

2
5
5

2
5
5

2
5
5

8
7
6

8
7
6

C
h
ro

m
a

O
ff
se

t
1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

1
2
8

5
1
2

5
1
2

C
h
ro

m
a

E
x
c
u
rs

io
n

2
5
5

2
5
5

2
5
5

2
5
5

2
5
5

2
5
5

2
5
5

8
9
6

8
9
6

C
o
lo

u
r

S
p
e
c
ifi

c
a
ti

o
n

In
d
e
x

0
1

2
1

2
1

2
1

2

C
u
st

o
m

S
D

T
V

5
2
5

S
D

T
V

6
2
5

S
D

T
V

5
2
5

S
D

T
V

6
2
5

S
D

T
V

5
2
5

S
D

T
V

6
2
5

S
D

T
V

5
2
5

S
D

T
V

6
2
5

C
o
lo

u
r

P
ri

m
a
ri

e
s

In
d
e
x

0
1

2
1

2
1

2
1

2

H
D

T
V

S
D

T
V

5
2
5

S
D

T
V

6
2
5

S
D

T
V

5
2
5

S
D

T
V

6
2
5

S
D

T
V

5
2
5

S
D

T
V

6
2
5

S
D

T
V

5
2
5

S
D

T
V

6
2
5

C
o
lo

u
r

M
a
tr

ix
In

d
e
x

0
1

1
1

1
1

1
1

1

H
D

T
V

S
D

T
V

S
D

T
V

S
D

T
V

S
D

T
V

S
D

T
V

S
D

T
V

S
D

T
V

S
D

T
V

T
ra

n
sf

e
r

F
u
n
c
ti

o
n

In
d
e
x

0
0

0
0

0
0

0
0

0

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
a
b
le

C
.1

:
P

re
d
efi

n
ed

v
id

eo
fo

rm
a
t

p
a
ra

m
et

er
s

fo
r

v
id

eo
fo

rm
a
ts

0
–
8

116

V
id

e
o

F
o
rm

a
ts

B
a
se

v
id

e
o

fo
rm

a
t

in
d
e
x

v
a
lu

e
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

N
a
m

e
(i

n
fo

rm
a
ti

v
e
)

H
D

7
2
0
P

-6
0

H
D

7
2
0
P

-5
0

H
D

1
0
8
0
I-

6
0

H
D

1
0
8
0
I-

5
0

H
D

1
0
8
0
P

-6
0

H
D

1
0
8
0
P

-5
0

D
C

2
K

D
C

4
K

F
ra

m
e

W
id

th
:

1
2
8
0

1
2
8
0

1
9
2
0

1
9
2
0

1
9
2
0

1
9
2
0

2
0
4
8

4
0
9
6

F
ra

m
e

H
e
ig

h
t:

7
2
0

7
2
0

1
0
8
0

1
0
8
0

1
0
8
0

1
0
8
0

1
0
8
0

2
1
6
0

C
h
ro

m
a

S
a
m

p
li
n
g

F
o
rm

a
t:

4
:2

:2
4
:2

:2
4
:2

:2
4
:2

:2
4
:2

:2
4
:2

:2
4
:4

:4
4
:4

:4

S
o
u
rc

e
S
a
m

p
li
n
g
:

0
0

1
1

0
0

0
0

T
o
p

F
ie

ld
F
ir

st
:

T
ru

e
T
ru

e
T
ru

e
T
ru

e
T
ru

e
T
ru

e
T
ru

e
T
ru

e

F
ra

m
e

R
a
te

In
d
e
x

7
6

4
3

7
6

2
2

N
u
m

e
ra

to
r

6
0
0
0
0

5
0

3
0
0
0
0

2
5

6
0
0
0
0

5
0

2
4

2
4

D
e
n
o
m

in
a
to

r
1
0
0
1

1
1
0
0
1

1
1
0
0
1

1
1

1

P
ix

e
l
A

sp
e
c
t

R
a
ti

o
In

d
e
x

1
1

1
1

1
1

1
1

N
u
m

e
ra

to
r

1
1

1
1

1
1

1
1

D
e
n
o
m

in
a
to

r
1

1
1

1
1

1
1

1

C
le

a
n

W
id

th
1
2
8
0

1
2
8
0

1
9
2
0

1
9
2
0

1
9
2
0

1
9
2
0

2
0
4
8

4
0
9
6

C
le

a
n

H
e
ig

h
t

7
2
0

7
2
0

1
0
8
0

1
0
8
0

1
0
8
0

1
0
8
0

1
0
8
0

2
1
6
0

C
le

a
n

L
e
ft

O
ff
se

t
0

0
0

0
0

0
0

0

C
le

a
n

T
o
p

O
ff
se

t
0

0
0

0
0

0
0

0

S
ig

n
a
l
R

a
n
g
e

In
d
e
x

3
3

3
3

3
3

4
4

L
u
m

a
O

ff
se

t
6
4

6
4

6
4

6
4

6
4

6
4

2
5
6

2
5
6

L
u
m

a
E
x
c
u
rs

io
n

8
7
6

8
7
6

8
7
6

8
7
6

8
7
6

8
7
6

3
5
0
4

3
5
0
4

C
h
ro

m
a

O
ff
se

t
5
1
2

5
1
2

5
1
2

5
1
2

5
1
2

5
1
2

2
0
4
8

2
0
4
8

C
h
ro

m
a

E
x
c
u
rs

io
n

8
9
6

8
9
6

8
9
6

8
9
6

8
9
6

8
9
6

3
5
8
4

3
5
8
4

C
o
lo

u
r

S
p
e
c
ifi

c
a
ti

o
n

In
d
e
x

3
3

3
3

3
3

4
4

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

C
in

em
a

C
in

em
a

C
o
lo

u
r

P
ri

m
a
ri

e
s

In
d
e
x

0
0

0
0

0
0

3
3

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

C
in

em
a

C
in

em
a

C
o
lo

u
r

M
a
tr

ix
In

d
e
x

0
0

0
0

0
0

0
0

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

T
ra

n
sf

e
r

F
u
n
c
ti

o
n

In
d
e
x

0
0

0
0

0
0

0
0

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
a
b
le

C
.2

:
P

re
d
efi

n
ed

v
id

eo
fo

rm
a
t

p
a
ra

m
et

er
s

fo
r

v
id

eo
fo

rm
a
ts

9
–
1
6

117

V
id

e
o

F
o
rm

a
ts

B
a
se

v
id

e
o

fo
rm

a
t

in
d
e
x

v
a
lu

e
1
7

1
8

1
9

2
0

N
a
m

e
(i

n
fo

rm
a
ti

v
e
)

U
H

D
T

V
4
K

-6
0

U
H

D
T

V
4
K

-5
0

U
H

D
T

V
8
K

-6
0

U
H

D
T

V
8
K

-5
0

F
ra

m
e

W
id

th
:

3
8
4
0

3
8
4
0

7
6
8
0

7
6
8
0

F
ra

m
e

H
e
ig

h
t:

2
1
6
0

2
1
6
0

4
3
2
0

4
3
2
0

C
h
ro

m
a

S
a
m

p
li
n
g

F
o
rm

a
t:

4
:2

:2
4
:2

:2
4
:2

:2
4
:2

:2

S
o
u
rc

e
S
a
m

p
li
n
g
:

0
0

0
0

T
o
p

F
ie

ld
F
ir

st
:

T
ru

e
T
ru

e
T
ru

e
T
ru

e

F
ra

m
e

R
a
te

In
d
e
x

7
6

7
6

N
u
m

e
ra

to
r

6
0
0
0
0

5
0

6
0
0
0
0

5
0

D
e
n
o
m

in
a
to

r
1
0
0
1

1
1
0
0
1

1

P
ix

e
l
A

sp
e
c
t

R
a
ti

o
In

d
e
x

1
1

1
1

N
u
m

e
ra

to
r

1
1

1
1

D
e
n
o
m

in
a
to

r
1

1
1

1

C
le

a
n

W
id

th
3
8
4
0

3
8
4
0

7
6
8
0

7
6
8
0

C
le

a
n

H
e
ig

h
t

2
1
6
0

2
1
6
0

4
3
2
0

4
3
2
0

C
le

a
n

L
e
ft

O
ff
se

t
0

0
0

0

C
le

a
n

T
o
p

O
ff
se

t
0

0
0

0

S
ig

n
a
l
R

a
n
g
e

In
d
e
x

3
3

3
3

L
u
m

a
O

ff
se

t
6
4

6
4

6
4

6
4

L
u
m

a
E
x
c
u
rs

io
n

8
7
6

8
7
6

8
7
6

8
7
6

C
h
ro

m
a

O
ff
se

t
5
1
2

5
1
2

5
1
2

5
1
2

C
h
ro

m
a

E
x
c
u
rs

io
n

8
9
6

8
9
6

8
9
6

8
9
6

C
o
lo

u
r

S
p
e
c
ifi

c
a
ti

o
n

In
d
e
x

3
3

3
3

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

C
o
lo

u
r

P
ri

m
a
ri

e
s

In
d
e
x

0
0

0
0

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

C
o
lo

u
r

M
a
tr

ix
In

d
e
x

0
0

0
0

H
D

T
V

H
D

T
V

H
D

T
V

H
D

T
V

T
ra

n
sf

e
r

F
u
n
c
ti

o
n

In
d
e
x

0
0

0
0

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
V

g
a
m

m
a

T
a
b
le

C
.3

:
P

re
d
efi

n
ed

v
id

eo
fo

rm
a
t

p
a
ra

m
et

er
s

fo
r

v
id

eo
fo

rm
a
ts

1
7
–
2
0

118

D Profiles and levels

A Dirac decoder shall support one or more different profiles and levels. Profiles and levels determine which

tools, syntax elements and structures shall be supported, and what decoder resources (computational and

memory) are required.

D.1 Profiles

A given profile requires that particular syntax/syntax elements shall be used and that decoder variables or

functions shall be set to particular values.

Dirac defines four profiles, Main (Long GOP), Main (Intra), Simple and Low Delay, corresponding to different

picture types. The Main (Intra), Simple and Low Delay profiles shall correspond to the Main, Simple and Low

Delay profiles of VC-2.

The profiles shall satisfy the following conditions:

• A Low Delay profile Dirac sequence shall set state[PROFILE] equal to a value of 0 in the parse parameters

(section 10.1) for each sequence header in the sequence.

• A Simple profile sequence shall set state[PROFILE] equal to a value of 1 in the parse parameters for

each sequence header in the sequence.

• A Main (Intra) profile sequence shall set state[PROFILE] equal to a value of 2 in the parse parameters

for each sequence header in the sequence.

• A Main (Long GOP) profile sequence shall set state[PROFILE] equal to a value of 8 in the parse

parameters for each sequence header in the sequence.

Further VC-2 compatible profiles may be added in future revisions of this specification with profile number

less than 8; other profiles may be added with profile number greater than 8.

A Dirac sequence shall comply with one of the supported profiles.

D.1.1 Low Delay profile

A Low Delay profile sequence shall contain only those data units whose parse codes are listed in Table D.1.

state[PARSE CODE] Bits Description

Number of

Reference

Pictures

0x00 0000 0000 Sequence header –

0x10 0001 0000 End of Sequence –

0x20 0010 0000 Auxiliary data –

0x30 0011 0000 Padding data –

0xC8 1100 1000 Intra Non Reference Picture 0

Table D.1: Parse code values for Low Delay profile sequences

D.1.2 Simple profile

A Simple profile sequence shall contain only those data units whose parse codes are listed in Table D.2.

D.1.3 Main (Intra) profile

A Main (Intra) profile sequence shall contain only those data units whose parse codes are listed in Table D.3.

D.2 Levels 119

state[PARSE CODE] Bits Description

Number of

Reference

Pictures

0x00 0000 0000 Sequence header –

0x10 0001 0000 End of Sequence –

0x20 0010 0000 Auxiliary data –

0x30 0011 0000 Padding data –

0x48 0100 1000 Intra Non Reference Picture (no arithmetic coding) 0

Table D.2: Parse code values for Simple profile sequences

state[PARSE CODE] Bits Description

Number of

Reference

Pictures

0x00 0000 0000 Sequence header –

0x10 0001 0000 End of Sequence –

0x20 0010 0000 Auxiliary data –

0x30 0011 0000 Padding data –

0x08 0000 1000 Intra Non Reference Picture (arithmetic coding) 0

Table D.3: Parse code values for Main (Intra) profile sequences

D.1.4 Main (Long GOP) profile [TBD]

A Main (Long GOP) profile sequence shall contain only those data units whose parse codes are listed in Table

D.4.

state[PARSE CODE] Bits Description

Number of

Reference

Pictures

0x00 0000 0000 Sequence header –

0x10 0001 0000 End of Sequence –

0x20 0010 0000 Auxiliary data –

0x30 0011 0000 Padding data –

0x0C 0000 1100 Intra Reference Picture (arithmetic coding) 0

0x08 0000 1000 Intra Non Reference Picture (arithmetic coding) 0

0x0D 0000 1101 Inter Reference Picture (arithmetic coding) 1

0x0E 0000 1110 Inter Reference Picture (arithmetic coding) 2

0x09 0000 1001 Inter Non Reference Picture (arithmetic coding) 1

0x0A 0000 1010 Inter Non Reference Picture (arithmetic coding) 2

Table D.4: Parse code values for Main (Long GOP) profile sequences

Low delay syntax pictures shall not be present in a Main (Long GOP) profile sequence.

D.2 Levels

A given value of level shall define constraints on the decoder resources required to decode a compliant sequence.

The values that are constrained are defined individually for each level.

A particular application domain may impose additional constraints on a decoder, for example the presence or

absence of a suitable video interface. Such additional constraints are not covered by this specification.

This specification defines levels 1 and 128. Other levels are application specific and will be defined in future

revisions of this specification. VC-2 compatible levels will have level number less than 128 and other levels will

D.2 Levels 120

have level number greater than 128.

The value 0 shall be RESERVED and shall not be used for any defined level. Sequences may use the value 0

for streams that do not conform to any defined level.

For level 1, the video parameters shall correspond to one of the base video formats as defined in annex C and

the video parameters of the base video format shall not be overridden. Level 1 shall be available for Low Delay,

Simple and Main (Intra) (VC-2 compatible) profiles only.

For level 128, the video parameters shall correspond to one of the base video formats as defined in annex C,

except that the signal range is restricted to 8 bit ranges and the chroma sampling format and frame dimensions

may be overridden by suitable values. Level 128 shall be available for Main (Long GOP) profile only.

A sequence compliant with a given level n shall set state[LEVEL] equal to n.

D.2.1 Decoder data buffers[DRAFT-TBC]

A reference picture buffer state[REF PICTURES] is defined for storing decoded reference pictures (if any).

In addition, levels may define two additional buffers, and applicable parameters for them:

• a bit stream buffer state[STREAM BUFFER] for buffering stream data prior to decoding

• a decoded picture buffer state[DECODED PICTURES] for storing decoded pictures (reference or non-

reference) for the purposes of picture reordering

For the purposes of this specification, the reference picture buffer shall be deemed to be additional to the

decoded picture buffer (i.e. reference picture storage will be duplicated in the decoded picture buffer).

D.2.1.1 Bit stream buffer operation[TBC]

D.2.1.2 Picture reordering and decoded picture buffer[TBC]

Two parameters shall be defined for constraining picture reordering. The first is the size, state[DPB SIZE],

of the decoded picture buffer.

The second is the reordering depth applicable to a Dirac sequence. This shall be defined as the maximum

number of picture data units that may occur between a picture with picture number N and a picture with

picture number N + 1 or N − 1.

D.2.2 Buffer models [TBC]

D.2.3 Level 1: VC-2 default level

This level is intended to provide minimal constraints on VC-2 compatible streams encoding one of the base

video formats (annex C). Data rates in this level are not bounded. This level is not intended to provide

guarantees of real time decoding.

This level shall only be available if the profile is set to Low Delay, Simple, or Main (Intra).

D.2.3.1 Sequence header parameters

The following constraints shall apply to the sequence header parameters (section 10):

• base video format shall be between 1 and 20 inclusive

D.2 Levels 121

• custom dimensions flag shall be False

• custom chroma format flag shall be False

• custom scan format flag shall be False

• custom frame rate flag shall be False

• custom pixel aspect ratio flag be False

• custom clean area flag shall be False

• custom signal range flag shall be False

• custom color spec flag shall be False

• picture coding mode shall be as per section 10.4

D.2.3.2 Picture header parameters

The following constraints shall apply to picture header parameters (section 11.1.1):

• state[WAVELET INDEX] shall be as table 11.2

• state[DWT DEPTH] shall be between 0 and 4 inclusive

• for core syntax pictures:

– state[CODEBLOCKS X] and state[CODEBLOCKS Y] shall be such that there is at least one

coefficient in each codeblock.

• for low delay syntax pictures:

– state[SLICES X] and state[SLICES Y] shall be such that there is at least one DC (0-LL) coefficient

per slice.

– values in the quantizer matrix shall lie between 0 and 127 inclusive

D.2.3.3 Transform data

The following constraints shall apply to transform data elements (section 11.3):

• quantized and inverse quantized wavelet coefficients shall lie between −219 and 219 inclusive

• for core syntax pictures:

– quantization indices for subbands and codeblocks shall lie between 0 and 68 inclusive

– quantization offsets encoded in codeblocks shall lie between -68 and 68 inclusive

D.2.4 Level 128: Long-GOP default level [DRAFT-TBD]

This level is intended to provide minimal constraints on long GOP streams encoding simple variants of the

base video formats (annex C). Data rates in this level are not bounded. This level is not intended to provide

guarantees of real time decoding.

This level shall only be available if the profile is set to Main (Long GOP).

D.2 Levels 122

D.2.4.1 Sequence header parameters

The following constraints shall apply to the sequence header parameters (section 10):

• base video format shall be between 1 and 20 inclusive

• custom dimensions flag may be False or True; if True then the frame width and frame height shall

be less than the values set in the base video format

• custom chroma format flag may be False or True

• custom scan format flag may be False or True

• custom frame rate flag shall be False

• custom pixel aspect ratio flag be False

• custom clean area flag shall be False

• custom signal range flag shall be True and the signal range parameters set to 8 bit SDI ranges (index

2 in table 10.5)

• custom color spec flag shall be False

• picture coding mode shall be as per section 10.4

D.2.4.2 Picture header parameters

The following constraints shall apply to picture header parameters (section 11.1.1):

• state[WAVELET INDEX] shall be between 0 and 4 inclusive

• state[DWT DEPTH] shall be between 0 and 4 inclusive

• state[CODEBLOCKS X] and state[CODEBLOCKS Y] shall be such that there is at least one coefficient

in each codeblock

D.2.4.3 Transform data

The following constraints shall apply to transform data elements (section 11.3):

• quantized and inverse quantized wavelet coefficients shall lie between −215 and 215 inclusive

• quantization indices for subbands and codeblocks shall lie between 0 and 63 inclusive

• quantization offsets encoded in codeblocks shall lie between -63 and 63 inclusive

D.2.4.4 Reordering and reference buffers [DRAFT-TBD]

A decoder must maintain a reference picture buffer for the purposes of inter picture prediction, and (separately)

a decoded picture buffer for the purposes of picture reordering, in addition to storage provided for decoding

the current picture. The decoded picture buffer shall contain non-reference pictures only.

A bit stream buffer is not required for this level.

The following constraints shall apply:

• The reference buffer size state[MAX RB SIZE] shall be 3.

D.2 Levels 123

• The decoded picture buffer size shall be 2 in the case of frame coding or 4 in the case of field coding.

• The picture reordering depth shall be 5 in the case of frame coding or 11 in the case of field coding

124

E Low delay quantisation matrices

This annex specifies the default quantisation matrices to be used in the low delay syntax and provides an

informative description of quantisation matrix design principles and of quantiser selection in both the core and

low-delay syntax.

E.1 Quantisation matrices (low delay syntax)

This section defines default quantisation matrices to be used for the quantisation of slice coefficients in the low-

delay syntax. The following tables define matrices for state[DWT DEPTH] ≤ 4. Values of state[DWT DEPTH]

not present in the tables in this section shall require a custom matrix to be encoded, as per Section 11.3.4.

Informative advice for constructing quantisation matrices based on noise power conservation and perceptual

weighting is given in Annex E.2.2.

state[DWT DEPTH]

Level Orientation 0 1 2 3 4

0 LL 0 5 5 5 5

1 HL,LH, HH - 3, 3, 0 3, 3, 0 3, 3, 0 3, 3, 0

2 HL,LH, HH - - 4, 4, 1 4, 4, 1 4, 4, 1

3 HL,LH, HH - - - 5, 5, 2 5, 5, 2

4 HL,LH, HH - - - - 6, 6, 3

Table E.1: Default quantisation matrices for state[WAVELET INDEX] == 0 (Deslauriers-Dubuc (9,7))

state[DWT DEPTH]

Level Orientation 0 1 2 3 4

0 LL 0 4 4 4 4

1 HL,LH, HH - 2, 2, 0 2, 2, 0 2, 2, 0 2, 2, 0

2 HL,LH, HH - - 4, 4, 2 4, 4, 2 4, 4, 2

3 HL,LH, HH - - - 5, 5, 3 5, 5, 3

4 HL,LH, HH - - - - 7, 7, 5

Table E.2: Default quantisation matrices for state[WAVELET INDEX] == 1 (LeGall (5,3))

state[DWT DEPTH]

Level Orientation 0 1 2 3 4

0 LL 0 5 5 5 5

1 HL,LH, HH - 3, 3, 0 3, 3, 0 3, 3, 0 3, 3, 0

2 HL,LH, HH - - 4, 4, 1 4, 4, 1 4, 4, 1

3 HL,LH, HH - - - 5, 5, 2 5, 5, 2

4 HL,LH, HH - - - - 6, 6, 3

Table E.3: Default quantisation matrices for state[WAVELET INDEX] == 2 (Deslauriers-Dubuc (13,7)))

state[DWT DEPTH]

Level Orientation 0 1 2 3 4

0 LL 0 8 12 16 20

1 HL,LH, HH - 4, 4, 0 8, 8, 4 12, 12, 8 16, 16, 12

2 HL,LH, HH - - 4, 4, 0 8, 8, 4 12, 12, 8

3 HL,LH, HH - - - 4, 4, 0 8, 8, 4

4 HL,LH, HH - - - - 4, 4, 0

Table E.4: Default quantisation matrices for state[WAVELET INDEX] == 3 (Haar with no shift))

E.1 Quantisation matrices (low delay syntax) 125

state[DWT DEPTH]

Level Orientation 0 1 2 3 4

0 LL 0 8 8 8 8

1 HL,LH, HH - 4, 4, 0 4, 4, 0 4, 4, 0 4, 4, 0

2 HL,LH, HH - - 4, 4, 0 4, 4, 0 4, 4, 0

3 HL,LH, HH - - - 4, 4, 0 4, 4, 0

4 HL,LH, HH - - - - 4, 4, 0

Table E.5: Default quantisation matrices for state[WAVELET INDEX] == 4 (Haar with single shift per

level))

state[DWT DEPTH]

Level Orientation 0 1 2 3 4

0 LL 0 0 0 0 0

1 HL,LH, HH - 4, 4, 8 4, 4, 8 4, 4, 8 4, 4, 8

2 HL,LH, HH - - 8, 8, 12 8, 8, 12 8, 8, 12

3 HL,LH, HH - - - 13, 13, 17 13, 13, 17

4 HL,LH, HH - - - - 17, 17, 21

Table E.6: Default quantisation matrices for state[WAVELET INDEX] == 5 (Fidelity))

state[DWT DEPTH]

Level Orientation 0 1 2 3 4

0 LL 0 3 3 3 3

1 HL,LH, HH - 1, 1, 0 1, 1, 0 1, 1, 0 1, 1, 0

2 HL,LH, HH - - 4, 4, 2 4, 4, 2 4, 4, 2

3 HL,LH, HH - - - 6, 6, 5 6, 6, 5

4 HL,LH, HH - - - - 9, 9, 7

Table E.7: Default quantisation matrices for state[WAVELET INDEX] == 6 (Daubechies (9,7))

E.2 Quantisation matrix design and quantiser selection (Informative) 126

E.2 Quantisation matrix design and quantiser selection (Informative)

This section provides an informative guide to the principles used to design the default quantisation matrix

E.2.1 Noise power normalisation

The quantisation matrices defined in the preceding section are designed to counteract the differential power

gain of the various wavelet filters, so that quantisation noise from each subband is weighted equally in terms

of its contribution to noise power when transformed back into the picture domain. Let α and β represent the

noise gain factors of the low-pass and high-pass wavelet filters used in wavelet decomposition. In a single level

of wavelet decomposition, quantisation noise in each of the four subbands is therefore weighted by the factors

shown in Figure E.1.

LL – α2

LH – αβ

HL – αβ

HH – β2

Figure E.1: Subband weights for a 1-level decomposition

For higher levels of decomposition, these subband weighting factors iterate in the same manner as the wavelet

transform itself. For example, with a two-level decomposition, the first level LL band, with weight α2 is further

decomposed to give four more bands with weights as for the 1-level decomposition, but multiplied by α2. This

yields the weights shown in Figure E.2.

In this specification, wavelet synthesis filters have been defined in terms of lifting stages, which are filters

operating on subsampled data. Wavelet filters are more traditionally represented in terms of an iterated

binary polyphase filter bank: the relationship between these representation is described in Annex G.2. The

factors α and β are most easily computed from the filter bank representation. In this case α is either the RMS

power gain of the low-pass synthesis filter, or the reciprocal of the RMS power gain of the low-pass analysis

filter; and β is the RMS power gain of the high-pass synthesis filter of the reciprocal of the RMS power gain

of the high-pass analysis filter.

Thus, in the terminology of Annex G.2, α =
1

(
P

n h(n)2)
1
2

or α = (
P

n h̃(n)2)
1
2

and β =
1

(
P

n g(n)2)
1
2

or β = (
P

n g̃(n)2)
1
2

These alternative definitions arise because the wavelet filters defined in this specification are not orthogonal,

but technically biorthogonal and so, strictly speaking, there is not power addition of the quantisation noise in

E.2 Quantisation matrix design and quantiser selection (Informative) 127

LH – αβ

HL – αβ

HH – β2

LL – α4

LH – α3β

HL – α3β

HH – α2β2

Figure E.2: Subband weights for a 2-level decomposition

each subband. The values used for quantisation matrices have been computed from the analysis rather than

the synthesis filters, as this yields better compression results in practice.

Note also that these factors must also take into account the shift factors used to add accuracy bits prior to

each wavelet decomposition stage. For a filter shift of d, α and β are each multiplied by 2−d/2.

Given a subband weighting factor w, a quantisation offset for that subband may be defined as 4 ∗ log2(w)

rounded to the nearest integer. These offsets are then normalised so as to be non-negative, to produce the

tables of the preceding section.

E.2.2 Custom quantisation matrices

Custom matrices may be defined that take into account not only noise power normalisation but also perceptual

weighting based on spatial frequency. Additional multiplicative factors may be computed for each subband,

which produce a matrix of quantisation offsets which may then be added to the default unweighted quantisation

matrices to produce a weighted quantisation matrix.

An example perceptual weighting may be constructed from the CCIR 959 Contrast Sensitivity Function (CSF).

This is a function csf(s) which produces a value representing the sensitivity to detail at a given normalised

spatial frequency s. For luminance, it is defined by

csf(s) = 0.255 ∗ (1 + 0.2561 ∗ s2)−0.75

Assuming an isotropic response, we may form a 2-d perceptual weighting function on horizontal and vertical

E.2 Quantisation matrix design and quantiser selection (Informative) 128

spatial frequencies xs, ys by

c(xs, ys) =
1

csf((xs2 + ys2)
1
2)

= 0.255 ∗ (1 + 0.2561 ∗ (x2
s + y2

s))0.75

Each subband in a wavelet decomposition represents a subset of spatial frequencies according to level and

orientation, partitioning the spatial frequency domain as per Figure 13.1. Note that this partitioning is un-

normalised, since output pictures (and their compression artefacts) may be viewed at a range of distances.

Accordingly we may pick a representative, un-normalised horizontal and vertical spatial frequency (fx(b), fy(b))

– perhaps the middle frequency of the band. For example, an LH band b at level 1 in a 1-level decomposition

will have mid frequency at (pw/4, 3 ∗ ph/4) where ph and pw are the padded width and height of the picture

(Section 13.1.2). This may be turned into a true spatial frequency by normalising by the number of horizontal

and vertical cycles per degree the output pictures will subtend at the target viewing distance and aspect ratio:

(fx(b)/cpdx, fy(b)/cpdy)

and this value may be fed into the weighting function to get a value c(b). The appropriate quantisation offset

for that subband is then 4 ∗ log2(c(b)), which may be used to define a modified quantisation matrix.

129

F Video systems model (Informative)

F.1 Colour models

All current video systems use a Y, C1, C2 form of coding for RGB source values. Although Y, CB , CR is widely

used, Dirac can support other colour systems such as Y, CO, CG as defined by ITU-T H.264 AVC annex E. For

this reason the non-luma components are generalized to the terms C1 and C2.

The R, G and B are tristimulus values (e.g. candelas/m2). Their relationship to CIE XYZ tristimulus values

can be derived from the set of primaries and white point defined in the colour primaries part of the colour

specification below using the method described in SMPTE RP 177-1993. In this document the RGB values

are normalised to the range [0,1], so that RGB=[1,1,1] represents the peak white of the display device and

RGB=0,0,0 represents black.

The ER, EG and EB values are related to the linear RGB values by non-linear transfer functions. Normally,

ER, EG and EB also fall in the range [0, 1], but in the case of extended gamut systems (such as ITU-R

BT1361), negative values can also occur. The non-linear transfer function is typically performed in the camera

and is specified in the transfer characteristic part of the appropriate colour specification. For aesthetic and

psychovisual reasons the encoding transfer function is not always the inverse of the decoding transfer function.

In fact the combined effect of the encoding and decoding transfer functions is such that the rendering intent

or end-to-end gamma of the system can vary between about 1.1 and 1.6 depending on viewing conditions.

The rationale for this is given in Digital Video and HDTV by Charles Poynton, (2003, Morgan Kaufmann

Publishers, ISBN 1-55860-792-7).

The non-linear ER, EG and EB values are subject to a matrix operation (known as ‘non-constant luminance

coding’), which transforms them into luma (EY) and colour difference (normally ECb and ECr) values. EY is

normally limited to the range [0, 1] and the colour difference values to the range [−0.5, 0.5]. In this specification,

the color difference components are referred to as ‘chroma components and are not to be confused with the

chroma signals used by composite television systems where the colour difference signals are significantly reduced

in both resolution and signal amplitude. The chroma components used in this specification can be sub-sampled,

either horizontally, vertically or both horizontally and vertically.

F.1.1 Y CBCR coding

The EY , ECb and ECr values are mapped to a range of integers denoted Y , CB and CR, typically [0, 255].

In order to display video, the inverse to the above operations must be performed to convert this data to EY ,

ECb, ECr, then to ER, EG, EB and thence to R, G and B.

F.1.2 Y COCG coding

In the case of YCoCg coding, the ER, EG and EB values are directly linearly scaled to integer ranges before

a lossless direct integer transform is applied to convert this data to Y , CO and CG) data.

F.1.3 Signal range

The output of the Dirac decoder consists of unsigned integer values. For Y CBCR coding, the offset and

excursion values are used to linearly scale these values into intermediate vlues EY , ECb, and ECr. EY is

normally clipped to the range [0, 1] and ECb, ECr to the range [−0.5, 0.5]. The effect is to clip integer Y values

output by the decoder to the interval

video params[LUMA OFFSET],video params[LUMA OFFSET]+video params[LUMA EXCURSION]]

and C1, C2 values to

[video params[CHROMA OFFSET]−video params[CHROMA EXCURSION]/2,video params[CHROMA OFFSET]+video params[CHROMA EXCURSION]/2]

F.1 Colour models 130

However, maintaining an extended RGB gamut can mean that either such clipping is not done, or non-standard

offset and excursion values are used to extract the extended gamut from the non-negative Y , C1, and C2 values.

In the case of Y CoCg coding, EY , ECO, and ECG should not be calculated. Instead, direct integer conversion

to RGB should be done (note: excursion values will be ignored in this integer conversion.)

F.1.4 Primaries

The colour primaries allow device dependent linear RGB colour co-ordinates to be mapped to device indepen-

dent linear CIE XYZ space. The primaries specified are the CIE (1931) XYZ chromaticity co-ordinates of the

primaries and the white point of the device.

The color primary specification therefore allows exact color reproduction of decoded RGB values on different

displays with different display primaries.

F.1.5 Colour matrix

F.1.5.1 Y CBCR coding

Unit-scale luma and chroma values EY , ECb and ECr should be derived from decoded Y , C1 and C2 values

using the signal range parameters as per Section F.1.3. Given these values, ER, EG and EB are determined

as follows:

ER = EY + 2 ∗ (1−KR) ∗ ECr

EG = EY − 2 ∗KR ∗ (1−KR) ∗ ECr

KG
− 2 ∗KB ∗ (1−KB) ∗ ECb

KG

EB = EY + 2 ∗ (1−KR) ∗ ECb

where KG = 1−KR −KB . This follows by inverting the equations

KR + KG + KB = 1

EY = KR ∗ ER + KG ∗ EG + KB ∗ EB

ECb =
EB − EY

2 ∗ (1−KB)

ECr =
ER − EY

2 ∗ (1−KR)

F.1.5.2 YCoCg coding

In the case of YCoCg coding, integer IR, IG, IB should be directly computed from the decoded Y , C1 (CO)

and C2 (CG) values by

Y − = video params[LUMA OFFSET]

Co = C1 − = video params[CHROMA OFFSET]

Cg = C2 − = video params[CHROMA OFFSET]

t = Y − (Cg À 1)

IG = t + Cg

IB = t− (Co À 1)

IR = IB + Co

The integer values are converted to unit-scale ER, EG, EB by dividing by 2state[LUMA DEPTH] and clipping to

[0, 1]. If the inverse transform has been correctly applied prior to coding and lossless coding employed, then

clipping will be unnecessary, and reversing the above operations will reproduce Y , CO and CG losslessly from

F.2 Transfer characteristics 131

IR, IG and IR yielding a transparent RGB to RGB coding system:

Co = IR − IB

t = IB + (IR − IB) À 1 ≈ (IR + IB)/2

Cg = IG − t =≈ IG − (IR + IB)/2

Y = t + (Cg À 1) ≈ IG/2− (IR + IB)/4 + (IR + IB)/2 = IR/4 + IG/2 + IB/4

Note that these matrix operations imply that the chroma data requires an additional bit, due to the subtractions

used to create chroma components. So for 8-bit RGB (IR, IG, IB) values, Y will be 8 bits and CO and CG

will be 9 bits.

F.2 Transfer characteristics

F.2.1 TV transfer characteristic

ITU-R BT.601-6 defines the 625-line and 525-line standard definition systems with an assumed receiver display

gamma value of 2.8. SMPTE 170M defines the NTSC SDTV system with an assumed receiver display gamma

value of 2.2.

High Definition systems for both 50Hz and 60Hz based systems use an encoding gamma value of 0.45 with a

linear portion at the low end of the scale to avoid the need for infinite gain at the receiver. This gamma value

is defined by ITU-R BT.709.

F.2.2 Extended Colour Gamut

ITU-R BT 1361 (Worldwide Unified Colorimetry of Future TV Systems) defines a color system with an

extended colour gamut. Refer to ITU-R BT 1361 (1998) for details.

ISO/IEC 61966-2 (Extended RGB Color Space) defines another colour system with an extended color gamut.

Refer to IEC 61966-2-2:2003 for details.

In both cases, it should be noted that use of the full range of Y, C1, C2 values can create negative R, G or B

values. The original color gamut equations were designed around the CRT (cathode ray tube) device. Some

flat panel displays are capable of displaying a wider color gamut resulting in the desire to extend the color

gamut to maximize the impact of these displays.

F.2.2.1 Linear

A linear transfer characteristic has f(x) = x i.e. EX = X.

F.3 Frame rate

The ratio of the frame rate values video params[FRAME RATE NUMER] and video params[FRAME RATE DENOM]

encodes the intended rate at which frames should be displayed subsequent to decoding. If video params[SOURCE SAMPLING]

is 1 (interlaced sampling), then fields are displayed at double the frame rate, in the order specified by the

video params[TOP FIELD FIRST] flag.

F.4 Aspect ratios and clean area

F.4.1 Pixel aspect ratio

The pixel aspect ratio value of an image is the ratio of the intended spacing of horizontal samples (pixels) to the

spacing of vertical samples (picture lines) on the display device. Pixel aspect ratios are fundamental properties

of sampled images because they determine the displayed shape of objects in the whole image. Failure to use

the correct value of pixel aspect ratio will result in distorted images where circles will be displayed as ellipses.

F.4 Aspect ratios and clean area 132

Most HDTV standards and computer image formats are defined to have pixel aspect ratios that are exactly

1:1.

For a number NH of pixels per unit length and NV pixels per unit height, this ratio is 1/NH : 1/NV or NV :

NH. For a video standard of WxH pixels displayed at 4:3 picture aspect ratio, NH=W/4 and NV=H/3.

F.4.1.1 Using non-square pixel aspect ratios

The defined pixel aspect ratios are designed to give image aspect ratios for standard definition television

operating with a standard 4:3 picture aspect ratio.

For 525-line video, defining a 704 x 480 picture with a 4:3 aspect ratio results in a H:V pixel aspect ratio of

10:11 (i.e. 480/3 : 704/4).

For 625-line video defining a 704 x 576 picture with a 4:3 aspect ratio results in a H:V pixel aspect ratio of

12:11 (i.e. 576/3 : 704/4).

If the intended image aspect ratio is 16:9, then the H:V pixel aspect ratios change accordingly to 40:33 for

525-line video and 16:11 for 625-line video.

The values specified above are widely, but not unanimously, agreed to be the correct values. Differences of

viewpoint arise from how much of the available horizontal picture size of 720 Y pixels is intended for display.

You are strongly advised to use one of the default pixel aspect ratios. However, if you know what you are

doing and dont like the default values the codec allows you to define your own ratio. You should be aware that

many display devices could ignore your decision and may default to using different and unsuitable values.

F.4.2 Clean area

The clean area is intended to define an area within which picture information is subjectively uncontaminated

by all edge distortions and possible unintended picture content such as microphones appearing at the top of

the picture. It could be appropriate to display the clean area rather than the whole picture, which can contain

edge distortions or unintended content.

The top-left corner of the clean area has coordinates

(video params[CLEAN LEFT OFFSET],video params[CLEAN TOP OFFSET])

counting from the top-left corner of the picture data, and dimensions video params[CLEAN WIDTH] by

video params[CLEAN HEIGHT].

Note that these dimensions refer to pixels within a picture, not a frame, so a change from interlaced to

progressive picture coding will necessitate a change of clean area if a custom clean area is used.

The clean area and the pixel aspect ratio together determine the aspect ratio of the displayed image which is

the ratio of the width of the intended display area to the height of the intended display area:

video params[CLEAN WIDTH] ∗ video params[PIXEL ASPECT RATIO NUMER]

video params[CLEAN HEIGHT] ∗ video params[PIXEL ASPECT RATIO DENOM]

Given two separate sequences, with identical image aspect ratio, if the top left corner and bottom right corners

of their clean apertures are coincident when displayed, then the images as a whole should be exactly coincident.

This is regardless of the actual pixel dimensions of the images or their clean areas. This allows sequences to

be combined together appropriately if they are appropriately scaled.

133

G Wavelet transform and lifting (Informative)

This is an informative annex introducing the fundamentals of wavelet filtering and the lifting scheme.

G.1 Wavelet filter banks

Figure G.1 below illustrates a single stage of a generalized wavelet decimation followed by reconstruction. The

aim is to get perfect reconstruction of the output so that it is identical to the original input. The filters

h(−z)

g(−z)

½¼

¾»
↓ 2

½¼

¾»
↓ 2

½¼

¾»
↑ 2

½¼

¾»
↑ 2

h̃(z)

g̃(z)

½¼

¾»

Figure G.1: Wavelet decimation and reconstruction

h(z) and g(z) are the low-pass and high-pass analysis filters, whilst h̃(z) and g̃(z) are the synthesis filters. The

filters must satisfy the conditions

h(z)h̃(z−1) + g(z)g̃(z−1) = 2 (Perfect reconstruction)

h(z)h̃(−z−1) + g(z)g̃(−z−1) = 0 (Alias cancellation)

These conditions imply that the synthesis filters are derived from the analysis filters and vice-versa:

g̃(z) = z−1h(−z−1)

h̃(z) = z−1g(−z−1)

If we have an orthogonal wavelet decomposition, then additionally H = h̃ and g = g̃ and there is a single

“mother” wavelet.

The next figure (F.2) illustrates how the frequency components are distributed both during decimation and

reconstruction. This figures illustrates how the alias frequencies created during the decimation process are

cancelled out during the reconstruction process. This feature of alias cancellation results from the wavelet

process and is a specific attribute of wavelet coding. It is important to note that if the decoder receives

imperfect signals (caused, for example, by quantisation errors) then the imperfections will result in distortion

in the reconstructed output.

Figure F.2 -Illustration of the alias frequency generation and cancellation in a wavelet filter bank A single

wavelet stage is insufficient for most video coding applications. The figure below illustrates how only the

low-pass path is passed on to the next wavelet decimation step. Because each step of the wavelet decimation

is self-contained, the reconstructed output is still identical to the input (barring quantisation errors).

Figure F.3 -Two-step wavelet processing filter bank The application of wavelet filter banks in picture coding

results in a two-dimensional decimation process as illustrated in figure F.4 below.

Figure F.4 -Decomposition of a single image into 7 wavelet frequency bands The final figure illustrates how

a real image is decimated to produce a low-frequency proxy in the top-left corner and a range of increasing

G.2 Lifting 134

frequency band components extending to the right side for increasing horizontal frequencies and downwards

for increasing vertical frequencies.

Figure F.5 -Decomposition of the EBU ”Boats” picture into 7 wavelet frequency bands

G.2 Lifting

For any set of filters, the analysis and synthesis filter banks shown in Figure G.1 can easily be re-expressed as

polyphase filter banks by means of applying matrices of filters in the subsampled domain. This is shown in

Figure G.2, where A(z) is the z−transform of the analysis polyphase filter matrix, and S(z) is the z−transform

of the synthesis polyphase filter matrix (the entries of both matrices being Laurent polynomials). In this

z
½¼

¾»
↓ 2

½¼

¾»
↓ 2

A(z) S(z)

½¼

¾»
↑ 2

½¼

¾»
↑ 2

z−1

µ´
¶³

Figure G.2: Polyphase representation of wavelet filter banks

representation, linear combinations of filters operate on both even and odd samples to produce new even and

odd samples:
xout

e (z)

xout
o (z)

!
= A(z)

xin

e (z)

xin
o (z)

!

Since the filter process is invertible, it can be shown that the analysis and synthesis matrices are related by

A(z) = (S(z−1)T)−1. Hence, in particular both the analysis and synthesis matrices are invertible. It can be

shown that this means that they are (up to gain factors and delays) factorisable into products of upper and

lower triangular matrices:

A(z) =

1 a1(z)

0 1

!
1 0

b1(z) 1

!
1 a2(z)

0 1

!
. . .

Each upper- or lower-triangular polyphase matrix represents a so-called lifting stage whereby either even

coefficients are modified solely by odd coefficients or odd coefficients solely by even coefficients. For example,

if
xout

e (z)

xout
o (z)

!
=

1 a(z)

0 1

!
xin

e (z)

xin
o (z)

!

then

xout
e (z) = xin

e (z) + a(z)xin
o (z)

xout
o (z) = xout

o (z)

and the filter a(z) has been applied to the odd coefficients and then used to modify the even coefficients. Not

only is this computationally efficient, breaking long filters into a number of shorter filter applied successively

but the factorisation into such filter stages allows for all computations to be done in-place, without additional

memory.

	Introduction
	Scope
	Conformance notation
	Normative References
	Definition of abbreviations and terms
	Abbreviations
	Terms

	Conventions
	State representation
	Number formats
	Data types
	Elementary data types
	Compound data types

	Functions and operators
	Assignment
	Boolean functions and operators
	Integer functions and operators
	Array and map functions and operators
	Precedence and associativity of operators

	Pseudocode
	Processes and functions
	Variables
	Control flow

	Overall specification
	Video formats
	Colour model
	Interlace
	Component sampling
	Bit resolution
	Picture frame size and rate

	Stream syntax
	Pseudocode
	Stream
	Sequence
	Parse Info headers
	Data units
	Auxiliary data
	Padding data

	Parse info header syntax
	Parse code values
	Parse code value rationale (Informative)

	Sequence header
	Parse parameters
	Version number
	Profiles and levels

	Base video format
	Source parameters
	Setting source defaults
	Frame size
	Chroma sampling format
	Scan format
	Frame rate
	Pixel aspect ratio
	Clean area
	Signal range
	Color specification
	Color primaries
	Color matrix
	Transfer function

	Picture coding mode
	Initializing coding parameters
	Picture dimensions
	Video depth

	Picture syntax
	Picture parsing
	Picture header

	Picture prediction data
	Picture prediction parameters
	Block parameters
	Setting chroma block parameters
	Numbers of blocks and superblocks
	Motion vector precision
	Global motion
	Picture prediction mode
	Reference picture weight values

	Wavelet transform data
	Transform parameters
	Wavelet filters

	Transform depth
	Codeblock parameters (core syntax only)
	Slice coding parameters (low delay syntax only)
	Quantisation matrices (low-delay syntax)

	Block motion data syntax
	Prediction modes and splitting modes
	Prediction modes
	Splitting modes

	Structure of block motion data arrays
	Block motion data initialisation

	Motion data decoding process
	Superblock splitting modes
	Propagating data between blocks
	Block prediction modes
	Block prediction mode
	Block global mode

	Block motion vector elements
	DC values
	Spatial prediction of motion data elements
	Prediction apertures
	Superblock split prediction
	Block mode prediction
	Block global flag prediction
	Motion vector prediction
	DC value prediction

	Block motion parameter contexts
	Superblock splitting mode
	Motion vectors
	DC values

	Transform data syntax
	Subband data structures
	Wavelet data initialisation
	Subband dimensions

	Inverse quantisation
	Quantisation factors and offsets

	Intra DC subband prediction
	Core syntax wavelet coefficient unpacking
	Overall process
	Subbands
	Zero subband
	Non-skipped subbands

	Subband codeblocks
	Codeblock dimensions
	Codeblock unpacking loop
	Skipped codeblock flag
	Codeblock quantiser offset

	Subband coefficients
	Zero parent
	Zero neighbourhood
	Sign prediction
	Coefficient context selection

	Low delay wavelet coefficient unpacking
	Overall process
	Slices
	Determining the number of bytes in a slice
	Setting slice quantisers
	Slice subbands
	Slice subband dimensions
	Luma slice subband data
	Chroma slice subband data

	Sequence decoding (Informative)
	Non-sequential picture decoding

	Picture decoding
	Overall picture decoding process
	Picture reordering
	Random access
	Reference picture buffer management
	Picture IDWT
	Component IDWT
	Vertical and horizontal synthesis
	One-dimensional synthesis
	Mathematical formulation of lifting processes (Informative)

	Lifting filter parameters

	Removal of IDWT pad values
	Motion compensation
	Overlapped Block Motion Compensation (OBMC) (Informative)
	Overall motion compensation process
	Dimensions
	Initialising the motion compensated data array
	Motion compensation of a block
	Spatial weighting matrix
	Pixel prediction
	Global motion vector field generation
	Chroma subsampling
	Sub-pixel prediction
	Half-pixel interpolation

	Clipping
	Video output ranges

	Data encodings
	Bit-packing and data input
	Reading a byte
	Reading a bit
	Byte alignment

	Parsing of fixed-length data
	Boolean
	n-bit literal
	n-byte unsigned integer literal

	Variable-length codes
	Data input for bounded block operation
	Unsigned interleaved exp-Golomb codes
	Signed interleaved exp-Golomb

	Parsing of arithmetic-coded data
	Context probabilities
	Arithmetic decoding of boolean values
	Arithmetic decoding of integer values
	Binarisation and contexts
	Unsigned integer decoding
	Signed integer decoding

	Arithmetic Coding
	Arithmetic coding principles (Informative)
	Interval division and scaling
	Finite precision arithmetic
	Symbol probability estimation

	Arithmetic decoding engine
	State and contexts
	Initialisation
	Data input
	Decoding boolean values
	Renormalisation
	Updating contexts
	Efficient implementation (Informative)
	Change of variables
	Bytewise operation
	Look-up table

	Arithmetic encoding (Informative)
	Encoder variables
	Initialisation
	Encoding binary values
	Scaling the interval
	Updating contexts
	Renormalisation and output
	Flushing the encoder

	Efficient implementation
	Bytewise operation
	Overlap and add

	Predefined video formats
	Profiles and levels
	Profiles
	Low Delay profile
	Simple profile
	Main (Intra) profile
	Main (Long GOP) profile [TBD]

	Levels
	Decoder data buffers[DRAFT-TBC]
	Bit stream buffer operation[TBC]
	Picture reordering and decoded picture buffer[TBC]

	Buffer models [TBC]
	Level 1: VC-2 default level
	Sequence header parameters
	Picture header parameters
	Transform data

	Level 128: Long-GOP default level [DRAFT-TBD]
	Sequence header parameters
	Picture header parameters
	Transform data
	Reordering and reference buffers [DRAFT-TBD]

	Low delay quantisation matrices
	Quantisation matrices (low delay syntax)
	Quantisation matrix design and quantiser selection (Informative)
	Noise power normalisation
	Custom quantisation matrices

	Video systems model (Informative)
	Colour models
	YCBCR coding
	YCOCG coding
	Signal range
	Primaries
	Colour matrix
	YCBCR coding
	YCoCg coding

	Transfer characteristics
	TV transfer characteristic
	Extended Colour Gamut
	Linear

	Frame rate
	Aspect ratios and clean area
	Pixel aspect ratio
	Using non-square pixel aspect ratios

	Clean area

	Wavelet transform and lifting (Informative)
	Wavelet filter banks
	Lifting

